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Abstract 

 
Management zones are within-field homogeneous spatial units that have specific limiting 
factors. While most algorithms tend to delineate fixed management zones’ borders, it is 
acknowledged that within-field variations between management zones are more graduate than 
crisp, mainly because of smooth variations in soil and landscape characteristics. In this work, 
an approach is proposed to account for the transient observations between management zones 
by delineating within-field fuzzy management zones. It is effectively considered that 
observations within transition zones could belong to more than one zone, and that this should 
be accounted for during the delineation process. The proposed approach requires to dispose of 
a pre-zoning of the data of interest, which is referred to as the initial zones. An iterative region 
growing algorithm is applied on within-field data to compute the frequency at which 
observations belong to each of these initial zones (membership frequency). Observations with 
a high membership frequency for a specific zone are considered to be part of the core (or 
kernel) of the zone, while the others are considered to be part of transitions areas (or support 
of the zone). The application of this iterative algorithm enables to generate a membership 
frequency map that helps to better visualize the size of the core and transient regions of each 
initial zone. These membership frequencies are then used to refine the initial zoning while 
accounting for user’s expertise and management decisions. The proposed approach was tested 
and evaluated on a real within-field yield dataset in France. Theoretical fertilization-based 
case studies, i.e., high and weak environmental constraints, were considered to show the 
interest of membership frequencies to refine yield-based management zones when user’s 
expertise and management decisions come into play. 
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Introduction 

 
The delineation of within-field zones is widely reported as a means to improve the 
management of cropping systems within the scope of Precision Agriculture. Multiple works 
were effectively aimed at generating homogenous within-field units, mostly using 
classification- (Li et al., 2007; Peralta et al., 2015) or segmentation-based (Leroux et al., 
2017; Roudier et al., 2008) algorithms. However, in agriculture, management zones are not 
well-defined spatial units that can be clearly distinguished from other surrounding spatial 
entities. Indeed, the variations in agronomic information between two management zones are 
not crisp but rather graduate, mainly because of smooth variations in soil and landscape 
characteristics across fields. While the borders between management zones are generally 
considered fixed in space, the presence of transient information between zones would be 
better taken into account if these borders were defined from a fuzzy perspective (Zadeh, 
1964). Indeed, the membership degree of observations inside these transition areas with 



regard to a specific zone is not clear. These observations could effectively be associated to 
more than one zone.  

As suggested by Paoli et al. (2007), a fuzzy delineation of management zones would be of 
interest to agricultural professionals because those zones could be adapted to their will and 
expertise, and to specific within-field applications. For instance, a wine producer might be 
interested in harvesting only the grapes within the top-quality zones, leaving behind those that 
could belong to transition zones to make sure that the vine-making process is optimized. Jones 
et al. (2016) have already intended to tackle this problem using simulated datasets by allowing 
the borders between management zones to either expand or shrink depending on a quantile 
separation of the data. It is also acknowledged that multiple studies have proposed to use the 
fuzzy variant of the classical k-means algorithm to generate management zones (Li et al., 
2007; Peralta et al., 2015; Tagarakis et al., 2013). However, the main problem is that, in most 
cases, the observations’ membership degree to each zone is seldom considered, meaning that 
the fuzzy approach has not much advantage with respect to a more classical k-means 
algorithm. Note however that Urretavizcaya et al., (2013) proposed an approach to account 
for membership degrees obtained with a fuzzy c-means algorithm to generate compact areas 
with significant oenological differences between them. 

In this work, it is considered that within-field data have already been zoned, i.e., an initial 
zoning is available. The objective of this study is two-fold. First, an iterative region growing 
algorithm is applied on the within-field data to compute the frequency at which these 
observations belong to each initial zone. Then, the observation membership to each initial 
zone is used to adapt the initial zoning to the user’s expertise and management decisions. The 
approach was tested and evaluated on a real within-field yield dataset (wheat) coming from a 
French farm. 

 
Material and methods 

 
Dataset used 

 
The approach was tested on a real within-field yield dataset arising from a farm located near 
Verdun, in the north-eastern part of France (WGS84: E:5.568, N:49.378). This 10-ha field 
was cropped in wheat and harvested with a Claas (Harsewinkel, Germany) combine. Yield 
data were first filtered and the zoning algorithm of Leroux et al. (2017) was then applied on 
these within-field yield data, which led to the generation of three within-field zones (Fig. 1). 
Note that the high-yielding area in the bottom left-hand corner of zone 1 was considered too 
small to be delineated as a specific zone by the algorithm of Leroux et al. (2017). For 
visualisation purposes, yield data were separated into five quantiles. 



 
Figure 1. Within-field yield dataset under study with the associated initial zoning. Yield data 
are separated into five quantiles. 

An iterative region growing algorithm 

 
On Figure 1, within-field initial zones were generated by the region growing and merging 
algorithm proposed in Leroux et al., (2017). In simple terms, a set of observations, referred to 
as the seeds, was selected in homogeneous regions within the field as the core of within-field 
zones. Observations were aggregated to these seeds following a similarity measure to form 
the zones (region growing). As the number of resulting regions is generally too high for 
management purposes, these zones were merged by maximizing an opportunity criterion 
(region merging). It must be clear that each observation is necessarily associated to one and 
only one zone. Interested readers are referred to Leroux et al. (2017) for more information.  

To generate fuzzy maps, it is proposed here to run the region growing algorithm of Leroux et 
al. (2017) multiple times with a fixed number of seeds, i.e., the number of zones in the initial 
zoning (three seeds in this case study). At each iteration, the region growing algorithm is run 
with a different set of seeds (each one being selected in one of the initial zones), so that in the 
end, all the zonings are somehow different but the number of zones are necessary the same 
given that the number of seeds is fixed. At the end of all the iterations, each observation can 
be given a membership frequency to each one of the initial zones. It can be considered that if 
observation 𝑥! always belongs to zone 𝑍! across iterations, then 𝑥! effectively belongs to the 
core (or kernel) of 𝑍!. On the contrary, if 𝑥! can belong to multiple zones, then 𝑥! might be 
part of a transition area (or support of a zone). A step by step description of this approach is 
presented below: 

Algorithm 1: Membership map generation 

1. Select randomly one observation within each one of the 𝑁 initial zones. This set of 
observations is referred to as the set of seeds 𝑆 (𝑆!,	𝑆!,	…,	𝑆!) 

2. Run the region growing algorithm of Leroux et al. (2017) with the previously selected 
set of seeds. 

3. Repeat 𝑛 times steps 1 to 2  
4. For each observation 𝑥!, compute the membership frequency 𝜇!,! to each zone 𝑍! as 

the ratio of the number of times 𝑥! belongs to 𝑍! to the number of iterations 𝑛. It must 



be noted that 𝜇!,! lies between 0 (observation 𝑥! never belongs to 𝑍!) and 1 
(observation 𝑥! always belongs to 𝑍!) 

5. Generate the membership frequency map 

In this study, the number of iterations 𝑛 was set to 30. Be aware that, by construction, as each 
observation is necessarily associated to one and only one zone at each iteration, 𝜇!,! = 1!

!!! . 

 
Adapting the initial zoning to users’ expertise and management decisions 

 
The membership map that can be generated with the previously defined algorithm is 
interesting in itself as it can be used to visualise to what extent an observation belongs to a 
zone rather than another. It is stressed here that the membership frequency of each 
observation to the initial zones could be used to refine the initial zoning for specific 
management decisions. Two theoretical fertilization-based use-cases (UC) are considered: 

• UC1: The field is subjected to strong environmental constraints and the farmer cannot 
accept any risk of overdosing. Zones should therefore be limited to their core or 
kernel 

• UC2: The farmer is using a low-cost fertilizer for which the risks on environment or 
the impact on yield are limited. Zones could therefore be extended to their support to 
a certain level. 

To provide a zoning that copes with these two different management strategies and users’ 
expertise, the following approach is proposed. 

Algorithm 2: Zoning adaptation 

1. Choose the zone 𝑍!! for which the border should be refined 
2. Choose a membership threshold 𝛼 above which it is considered that the observations 

definitely belong to 𝑍!!. 
3. Update the membership frequency of each observation as follows: 

𝑖𝑓 𝜇!,!! > 𝛼 𝑡ℎ𝑒𝑛 

𝜇!,!! = 1
𝜇!,! !!!! = 0
𝜇!!,!! !!!! = 0

𝑅𝑒𝑠𝑐𝑎𝑙𝑒 𝜇!!,!  𝑠𝑜 𝑡ℎ𝑎𝑡 𝜇!!,!  𝑟𝑒𝑚𝑎𝑖𝑛𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 1
!

!!!
 

 

4. For each observation 𝑥!, compute a weighted yield value 𝑌!! =  𝜇!,!×!
!!!  𝑌!! where 

𝑌!! is the average yield of the initial zone 𝑍! 
5. Select one seed per zone as the one with the maximum membership value  
6. Run the region growing algorithm of Leroux et al. (2017) using the weighted yield 

attribute and the previously selected seeds.	

 

 

 

 



 

Results and discussion 

 
Membership maps and fuzzy zoning 

 
Figure 2 shows the membership frequency of each observation for the three zones of interest. 
It appears clearly that the spatial extent of membership frequencies for zone n°2 is much 
larger than for the two other zones, meaning that zone n°2 could be seen as a transition zone 
between zones n°1 and 3. The core of zone n°3 seems to be located on the western, northern, 
and eastern parts of the field as the southern region of zone n°3 (centre of the field) has a 
colour ranging from purple to blue. It can be seen that this is the region where observations 
have a lower yield value compared to the rest of zone n°3 (Fig. 1). Figure 2 highlights that 
observations near the border of each zone have a significative lower membership frequency 
than the remaining observations. Interestingly, observations within the region on the bottom 
right hand corner of the field, belonging to the initial zone n°2, have a similar membership 
frequency for zones n°1 and 2 (Fig. 2). It can be seen that the membership frequency map is 
also interesting to evaluate the surface of the transition zones. 

 
Figure 2. Membership frequency map to each zone of interest. For visualisation purposes, 
membership values were interpolated via inverse distance weighing with a power distance of 
2 on a 2x2m grid. Interpolated values are solely used for mapping. All the algorithms make 
use of raw (non-interpolated) data. 

Figure 3 shows how the zoning could be refined for zones n°1 and 3 depending on the 
management strategies defined by users. As the threshold 𝛼 increases, zones n°1 (top) and 3 
(bottom) shrink as transient observations are removed from the zones. These new zonings 
would be more adapted to the first use-case (UC1) previously defined where environmental 
constraints are strong and the farmer must not take any risk with respect to the fertilization of 
regions out of zones n°1 or 3 (Fig. 3, right) On the contrary, as the threshold 𝛼 decreases, 
zones n°1 (top) and 3 (bottom) expand as transient observations are aggregated to the zones, 
i.e., the zone’s support is considered to be part of the zone (Fig. 3, left). In this case, the 
zonings would be more suitable to UC2 as the fertilization-based risk is much lower. Figure 3 
demonstrates that the expansion and shrinking of the zones is not simply a buffer applied on 
the borders as the new zones follow the yield values across the field, e.g., when 𝛼 is set to 0.7 
for zone n°3.  

 



 
 

Figure 3. Adaptation of the zoning to specific management decisions. Zones are either 
expanded or shrunk depending on the membership threshold that is chosen. Plots on the top 
represent zoning with respect to zone 1. Plots on the bottom represent zoning with respect to 
zone 3.  

 

Further considerations 

 
Readers must be aware that the initial zoning has a great importance in the proposed 
methodology. In fact, this initial zoning conditions the number of zones and the possible 
locations where the seeds can be selected in each zone. Different initial zonings would 
necessarily lead to different fuzzy zonings. It must however be clear that the initial zoning, 
derived from the approach of Leroux et al. (2017), was motivated by operational constraints 
and was considered reliable here. The high-yielding region in the south-west portion of the 
field was effectively considered too small to be delineated. 

It must be said that the concept of fuzzy zones has been tackled in this study with a frequentist 
or probabilistic approach. Indeed, the membership of each observation 𝑥! to a zone 𝑍! was 
defined as the number of times 𝑥! belonged to 𝑍!. This frequency membership is different 
from the more common degree membership that can be obtained with specific fuzzy 
algorithm such as the fuzzy k-means. Further work should be carried out to evaluate the 
similarities or differences between those two information.  

The membership frequency maps presented in this study were obtained after the application of 
an iterative region growing algorithm, which used seeds randomly selected within the initial 



zones 𝑍!. It is clear that the choice of the algorithm to generate the zones and the way seeds 
are selected within the zones will have an impact on the membership frequency of each 
observation to the zones. Other seed sampling processes might be considered. For instance, 
the seed selection could be constrained to regions near the zones’ border. This would certainly 
allow zones to expand further (zones would have a larger support). Another possibility could 
be to select seeds with a yield value near the centre of the yield distribution of each zone to 
ensure that noisy observations are not selected.  

For now, no rules have been set up for the selection of the membership threshold 𝛼. A set of 
maps with different thresholds was shown to evaluate how the zoning could be adapted to 
specific management decisions. The threshold should be chosen in accordance with the user’s 
expertise on the field and with respect to the management decisions to be made. There might 
be cases where some zones have multiple cores, i.e., transition areas are not solely at the 
border between zones but also within the zones. This might be problematical to adapt the 
zoning as there would be a need to account for these multiple cores. These multiple cores 
would however be seen relatively easily on the membership frequency map. If such 
phenomenon happens, there might be a need to work on the initial zoning to make sure that 
the zone with multiple cores is separated into multiples zones. 

For a given membership threshold 𝛼, the proposed approach generates one map per zone of 
interest. As the number of zone increases, the number of maps will consequently increases, 
which will make the reading and interpretation of the zoning more difficult by end users. 
Further work will have to investigate on how to combine these maps to facilitate the decision-
making process.  

Finally, fuzzy zonings would also benefit from quality criteria that would help assess how 
well the zones were treated. Even zones are considered homogeneous, it is clear that the 
natural intrinsic variability of plants will lead to some treatment errors that would be 
interesting to know about. It must be noted that this criterion will help to evaluate the 
application error in the small region in the bottom left hand corner of zone n°1, which was 
considered too small to be delineated in the initial zoning. 

 
Conclusion 

 
This work has made use of the fuzzy set theory to improve the delineation of management 
zones. Maps of membership frequency were built with an iterative region growing algorithm 
to evaluate to what extent observations belonged to specific within-field zones. These 
membership frequencies were then used to refine the borders of management zones so as to 
cope with theoretical fertilizer-based case studies where environmental constraints were either 
strong or weak. So far, the membership threshold above which observations were considered 
to be part of the core of the zones was not defined automatically nor by expertise. Maps with 
different threshold’s settings were simply displayed to assess how the zoning could be 
possibly adapted. Future work will intend to combine the multiple fuzzy zonings that were 
generated to facilitate the decision-making process. 
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