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ABSTRACT
Affective computing is the study and development of sys-
tems and devices that can recognise, interpret, process, and
simulate human affects. In this context, computational mod-
elling of emotion is a major challenge in order to design be-
lievable virtual humans. This factor has an impact on both
the individual behaviour and the collective one. Recently,
researchers have shown an increased interest in the emotion
contagion phenomenon in order to model emerging group
behaviour.

Stemming from works on multi-agent systems environ-
ments, we propose an architecture to manage both internal
and external emotion dynamics. Emotions evolve in func-
tion of three influences: punctual events, temporal dynamics
and external influences. In an embodied agent approach, the
first is the responsibility of the agent’s mind, the second of
the agent’s body, and the third of the environment. This
functional architecture is then adapted to a multi-agent ar-
chitecture, adding a control responsibility to the agent body.
Finally, we show the results of several experiments to exam-
ine the properties of the architecture and its efficiency by
comparing it to a full agent approach.

Categories and Subject Descriptors
Computing Methodologies [Artificial intelligence]: Dis-
tributed artificial intelligence, Multi-agent systems

Keywords
Multi-agent Systems, Embodied agent, Emotional conta-
gion, Architecture

1. INTRODUCTION
Human behaviour simulation has to take into account the

role of emotions in the decision process [12]. Emotions
have an impact on the whole cycle of the agent: percep-
tion, decision and action are driven by the agent’s emotional
state. Emotions are also used as a metaphor of social con-
structs in agent learning, trust and norm following, or text
analysis. In this article, we focus on the agents emotion
computation, specifically the different influences generating
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their emotional state and the underlying MultiAgent System
(MAS) architecture.

Recently, the emotional contagion theme has emerged to
explain a number of collective phenomena such as crowd be-
haviour [11], or effectiveness in performing group tasks [1].
Collective behaviour is not a simple aggregation of individ-
ual independent behaviours, especially because of the human
ability to synchronise their emotional state with the one
of their peers. This phenomenon takes place through two
mechanisms: empathy and emotional contagion [1]. Empa-
thy is a high-level cognitive phenomenon, while emotional
contagion is a reactive phenomenon described as ”a process
by which a person or group of people influence the emo-
tions or behaviour of another person or another group by
the conscious or unconscious induction of emotional states
and behavioural attitudes” [21], encountered for example in
crowds.

The computation of the emotional state of an agent de-
pending on its perceptions has been studied extensively in
the literature, but emotional contagion has not received the
same attention. Furthermore, the literature on emotional
contagion [2, 3, 8, 11, 24, 25] generally does not explain the
underlying MAS architecture, leaving open the question of
what multi-agent architecture has to be used to allow the
introduction of massive simulations with sensory emotional
agents.

In this article, we propose an hybrid architecture where
a part of the emotional dynamics is delegated to the multi-
agent environment, in accordance with the actual underly-
ing mechanisms. This allows to alleviate a part of the agent
complexity and computation cost. Then, we verify the mech-
anism properties and empirically compare an agent-only so-
lution with our environment-based architecture.

In Section 2, we detail the motivations for our emotional
dynamics management architecture and discuss its impact
on the autonomy of the agent. In Section 3, we introduce the
architecture, MA/SDEC (Mixed Agent/Social Dynamics for
Emotion Computation), and the corresponding formulas for
emotion computation to illustrate our approach. In Section
4, we give the results of experiments to verify the properties
of our model. In Section 5, we compare our architecture to
a full agent approach. Finally we discuss our approach and
propose some perspectives in Section 6.

2. RELATED WORKS AND MOTIVATION
There are two main architectural approaches for emo-

tional contagion: agent-only approaches, and state-sharing
approaches. Most of the articles describing the whole archi-



tecture (e.g. [15]) use an agent-only solution, transmitting
the state of all agents to their neighbours and then calcu-
lating the emotional contagion in each agent. This solution
has two limits: firstly, each agent has to display its emo-
tional state and have the knowledge of contagion moderators
to successfully compute the contagion result, and secondly
similar calculus are done in every agent.

Broekens et al. [5] have compared several architecture for
group emotions. In this work, the computational model of
emotion is separated in three steps (appraisal, emotional
state maintenance and emotional behaviour), and the au-
thors show how the choice of which part of the computation
is shared impacts both computation time and simulation
quality. In the same way, mental states may be spread to ob-
tain shared beliefs, emotions and group decision-making [4].
This approach enables to share efficiently computation costs
and obtain consistent behaviour. However, this modelling
necessitates to share an important part of the agents’ pri-
vate states.

Emotions evolve according to three influences [7]: one-off
events, temporal dynamics and emotional contagion. Tra-
ditionally in multi-agent modelling, all processes are inte-
grated into the architecture of the agent, see e.g. [9]. If
the evaluation of the impact of one-off events is necessarily
managed by the cognitive process of the agent, we propose
to decentralise the other processes in the software body of
the agent and in the environment.

Although there is no consensus on the way emotions are
processed in biological systems, many computational mod-
els have been proposed. In the following, we base our mod-
elling on the thesis whereby the computation of emotions is
the result of an intuitive (appraisal) and cognitive dual pro-
cess [20]. The first is semi-automatic and often unconscious.
It represents the change resulting from an immediate emo-
tional percept, it concerns the so-called primary emotions
(such as joy or amusement). The second is a cognitive eval-
uation, which derives from the consistency between beliefs,
goals, and percepts of the agent and the emotions he feels,
with emotions both primary and secondary (such as shame).
As we mentioned in the introduction, the emergence of con-
sistent collective behaviour require the modelling of empathy
and emotional propagation. If empathy requires a symbolic
representation of the other, Hatfield et al. [10] showed that
emotional contagion takes place at a significantly lower level
of consciousness than empathy, via uncontrolled automatic
processes.

In order to propose an adequate architecture for emotional
contagion, we rely on two concepts: the active environment
and the body/mind separation. The notion of explicit en-
vironment has long been associated with the reactive agent
paradigm, but recent works [26] have shown the benefits
of the use of this abstraction in the general framework of
MAS. These studies highlight the interest to delegate some
responsibilities of agents to the environment. In particular,
the environment may be in charge of accessing and spreading
a part of the agent states. In the context of emotion mod-
elling, the environment can get the agents emotional states
and compute the emotional contagion instead of them.

In the same logical way, we consider that the agent con-
sists of two parts: its mind and its body (which may possibly
be a software body) [18]. In this embodied agent framework,
the mind contains the decision process of the agent and is
autonomous, and the body is influenced by the mind, but

controlled by the environment. This corresponds to human
functioning: although the mind may take any arbitrary de-
cision, the limits to the realisation of these decisions are
imposed by both the body capacities and its environment
rules. In practice, our proposal implies that the body states
of the agent are observable and that access to them is con-
trolled by the environment, including for the agent itself. For
the calculation of emotions, we propose that the perception
of events is the responsibility of the mind of the agent, the
temporal dynamics managed by the body and the emotional
contagion by the environment.

A number of multi-agent community members consider
that such modelling violates the principle of agent auton-
omy. Quite the opposite, we believe it provides a clearer
separation between the responsibilities of each of the system
components, based on the mechanisms involved in the real
world. Any agent is always situated in an environment (that
can be software, real or simulated), and therefore an agent
is never independent of it. One objective of the body/mind
separation is to clearly delineate the agent autonomy be-
tween its mind (full autonomy) and the rest of the MAS
(including actions and actions results).

3. MA/SDEC ARCHITECTURE
The Mixed Agent/Environment Dynamics for Emotion

Computation model (MA/SDEC) is a high-level model which
defines global mechanisms for emotion calculus and their
dependencies. Emotions evolve in function of three influ-
ences [7]: punctual events, temporal dynamics and external
influences. The first is the responsibility of the agent’s mind,
the second of the agent’s body, and the third of the environ-
ment. The MA/SDEC model describes the dynamics and
responsibilities of each MAS component, but does not rely
on a particular representation of emotions and personality.

For each emotion e, the update formula is composed of
three terms:

et+1 = et + Ψ(b, i, p, e) + Φ(p, e) + Ω(p, e)

with

• b, i, p: beliefs, intentions and personality of the agent,

• Ψ(b, i, p, e) the event dynamics: emotions evolve in
function of the stimuli and of its internal state,

• Φ(p, e) the internal dynamics: emotions tend to decay
in function of the agents’ personality traits towards an
equilibrium,

• Ω(p, e) the external dynamics: emotions vary in func-
tion of the other agents and of the sensitivity of the
agent.

In Figure 1, we give an overview of the architecture and
how it relates to the associated model. The emotions are
stored in the body of the agent. The events dynamics Ψ
are an influence of the mind on the body. The internal
dynamics Φ are managed by the body itself. The emotional
contagion Ω is managed by the environment. In the multi-
agent system, the agents are used to implement only the
mind of the agents, while both the body and the virtual
environment are managed by the MAS environment.



Figure 1: MA/SDEC model and architecture

3.1 Agent’s mind: Event Dynamics
Figure 2 shows a generic agent architecture with emotion

support, such as [13] and [14]. The agent gets new informa-
tion (perception, message and body) from the environment.
This new information generates instant emotions through a
primary emotion update function, and the agent changes its
beliefs in function of its emotions.

Figure 2: Agent Architecture

The selection of desires and intentions is similar to the
classical BDI scheme except for the emotion and personality
influence. Once intentions are selected, the agent updates
its emotions through a secondary emotion update function.
If this update modifies its emotions, it updates again its
beliefs, desires and intentions. Finally, it plans its actions
and executes its new plan.

The general function for emotion update is defined as:

Ψ : B × I × P × E → E

with B the set of beliefs, I the set of intentions, P the set
of personalities and E the set of emotions.

We have proposed an agent architecture that illustrates
this BDI scheme and manages emotions in [14]. In this work,
the perception and emotion computation are processed thanks
to fuzzy rules.

3.2 Agent’s body: Internal Dynamics
Internal temporal dynamics (Figure 3) are managed by the

agent itself or by the environment via the body of the agent.
It represents the tendency of emotions to stabilise over time.
A second module inside the body allows the temporal control
of emotions dynamics. It limits emotions variation in order
to make smoother state modification for the agent. This
module limits the oscillation risk in case of contrary stimuli.

Figure 3: Temporal dynamics

Several authors have observed that emotions tend to decay
over time, either towards a neutral state [6,25], or towards a
baseline [20] which depends on the personality of the agent.



Since the equation depends on the emotion representation,
it has rarely been made explicit in the literature. In [7],
emotions are tri-modal ({−1, 0, 1}) and the emotion decay
parameter represents the number of time steps before re-
turning to a neutral state if no event impacting this emotion
occurs in the meantime. However, this discrete representa-
tion does not fit fine-grained emotion simulation.

For emotions represented as numerals in [−1, 1], the emo-
tion variation is calculated as:

Φ : P × E → E

Φ(p, e) = (1− αe)ebase + (αe − 1)et

with ebase the personality-based emotion baseline, et the
emotion level and αe the decay speed parameter for emo-
tion e. The same formula manages the internal dynamics of
all emotions, parameters are set for each agent according to
their personality traits.

The control module limits emotional fluctuations from one
step to another. It allows to stabilise emotions and smooth
transitions. The Γ function of the control module is:

Γ : E → E

Γ(δe) =

{
δe if |δe| < σ

sgn(δe) σ otherwise

Function sgn gives the sign of a real number. If the modi-
fication of the emotional state δe = et+1− et is greater than
a threshold σ, then, this modification is limited by σ.

3.3 Environment: Emotional Contagion
Emotional contagion allows agents to be influenced by

other agents states. Spatial and/or psychological proxim-
ity is necessary for emotional contagion.

External dynamics are managed by the perception func-
tion of the MAS environment [26], in order to give the right
information to the right agent(s). Concerning the emotion
propagation mechanism specifically, the environment regu-
larly updates the agents body state (Figure 4).

The emotion propagation manager is a module of the MAS
environment (Figure 4). It updates cyclically agent’s bodies
states. It gets (1) the current state of the agent, here a1.
It updates (2) accordingly its state of the world. The state
of the world contains the body properties of all the agents.
Then, the emotion propagation manager calculates the ef-
fects of emotion propagation on the agents’ neighbours in
function of their previous state and of their tendency to em-
pathy. Finally, the MAS environment spreads (3) these into
the concerned agents’ bodies, a2 in our example.

The emotion contagion calculus is inspired from several
works in the modelling of agents influences on each other.
A majority of contagion models derive from [1], considering
the following factors as impacting the contagion strength
[3, 11, 15]: the level of the sender’s emotion, the sender’s
emotion expression, the receiver’s openness for received emo-
tion and the strength of the channel from sender to receiver.
We simplify this approach by using the physical distance to
qualify the strength of the emotion contagion:

Ω : P × E → E

Ω(p, e) = δR × γR
with δR the receiver agent openness and γR the influence
of the other agents on agent R. It has been shown that
the agent openness can be derived from personality traits

Figure 4: Environment emotion propagation module
and agents’ interactions

(Agreeableness, Openness and Extraversion) expressed with
the Big Five model [15].

The influence γR is defined as inversely proportional to
the distance between the agents:

γR =
∑

∀A 6=R|dist(A,R)<τ

(eA − eR)× β

dist(A,R)

with eA the emotion level of agent A and dist(A,R) the Eu-
clidean distance between A and R. τ and β are parameters
used to define respectively the maximum emotion percep-
tion distance and the influence strength. Using a circle of
influence centred on the agent is a simplification : an agent
perceives the emotions of all agents situated in this circle,
including agents it may not be able to see (e.g. behind it).

Let us notice that in case of sequential computation of the
emotional contagion, the order of computation impacts the
result. Practically, it implies that we update simultaneously
all the states based on the previous states in order to not
introduces biases in the results.

4. EXPERIMENTAL PROPERTIES
In this article, our goal is not to validate the formulas, but

to examine the properties of our architecture, and the effect
of each module.

Hence, we have chosen to separate the validation of the
mechanism from the study of its properties. The first ex-
periment is aimed at verifying the mechanism by comparing
it to data published in a social psychology study on little
groups. In the following section, the second set of exper-
iments is designed to show the properties of the model in
terms of run time.

We have run experiments using the MadKit1 platform, a
general-purpose multi-agent system platform. The agents
are situated on a two-dimensional discrete space and do not
move throughout the simulation.

4.1 Reference Data and Simulation Parame-
ters

1http://www.madkit.org



Computational models of emotional contagion are all based
on the seminal work of Barsade [1]. In this work, the author
has done a series of experiments on groups of 3 to 5 stu-
dents, who do not know each other beforehand, and have to
achieve a semi-cooperative task. One of the students was an
actor who had to act constantly during the exercise a partic-
ular emotional state (joyful/high energy, joyful/low energy,
sad/high energy, and sad/low energy). The emotional state
of the other individuals of the group was then scored in two
ways: a questionnaire answered by the participants, and
video analysis of their behaviour. We propose to verify our
model thanks to the qualitative and quantitative data given
by Barsade in his article.

In Barsade’s experiments, the students do not know each
other, and the distance is not relevant. Hence, we initialise
the distance between all agents as a constant. The param-
eters are initialised as shown in Table 1. We consider that
the emotional level of the actor does not change during the
experience.

Parameter Domain Default value
δR [0.75, 1.25] Random uniform
e [−1, 1] Random uniform
ebase [−1, 1] Random uniform
αe [0, 1[ 0.9
β R+ 1
σ [0, 1] 1

Table 1: Simulation parameters

4.2 Verification
In this first experiment, we compare the emotion evolution

pattern over time. The simulated actor is an attractor, since
it stimulates constantly the other agents.

Figure 5 illustrates this experiment with a group of 5
agents. The emotional level is normalised on a 1-9 scale
(instead of [-1,1]), in order to be consistent with Barsade.
We observe that the emotional levels of the agents change
toward equilibriums around the actor’s state. The states of
the agents do not converge to the same equilibrium, since
these depend on the ebase parameter, which are respectively
5.8, 6.6, 1 and 1.8 for the agents 1, 2, 3 and 4.

With respect to the previous studies of Bosse et al. [3], Co-
enen and Broekens [6] and Lhommet et al. [15], we find the
same pattern, with the difference of the internal dynamics,
which implies that these authors find a convergence in one
equilibrium state of all the agents perceiving the emotions.
Hence, our model does reproduce the mutual absorption phe-
nomenon.

Let us study the extremums. For α = 1 the tempo-
ral dynamics is cancelled, hence the curves converge. For
α = 0 the temporal dynamics modifies the emotion level
to its baseline in one step, so that the other stimuli (events
and/or contagion) have to be constant to modify this level.

Our pattern is consistent with the results of Barsade, who
found both emotional convergence and a high disparity of
individual emotions (the standard deviation of the question-
naire results varies between 0.99 and 1.16 on 5-points scale).
It implies in our model the equilibrium of external and in-
ternal dynamics.

Figure 5: Emotional convergence in a group of 5
agents.

The Γ function modifies the emotional states variations.
Hence, lowering σ causes a lengthening of the convergence
period, but doesn’t impact the curve shape. It allows the
representation of emotional changes that take into account
emotional contagion but are not immediate. This behaviour,
which exists even if Γ function is removed, is a phenomenon
of hysteresis, i.e. a dynamic lag between cause and effect.

To illustrate this phenomenon, we conducted an exper-
iment in which the stimulus is not constant. An agent
changes state between two modalities (−0.5 and 0.5) at a
rate of 0.05 per time step, then waits for the stabilisation of
the other agents before changing modality again.

The corresponding hysteresis loops are plotted in Figure 6.
The studied causal relationship is the effect of the gap (the
difference between the emotional state of the stimulating
agent and the emotional state of the agent studied) on the
emotional state. Both equilibriums shown for the agent 3
are stable states, when the stimulating agent is respectively
at −0.5 and 0.5. The parts of the curves that are outside the
loops are those corresponding to the initial situation, when
the agents first join their stable state. The direction of the
transitions between the two stable states is noted in the fig-
ure.The gradient of the loop increases as the stimulus (here
represented by the gap) is stronger, taking a more and more
important delay. The gradient then reaches the σ limit given
by the Γ function. Then, when the emotional state of the
agent causing the stimulation ceases to decrease, the state of
the stimulated agents joins the stable state, which depends
on each agent’s personality and on the external dynamics.

5. EFFICIENCY OF ENVIRONMENT USE
In this section, we compare the cost in computation time

of our architecture using the environment with a purely
agent solution. To do this, we implemented a C++ simula-
tor, allowing a better memory use control than Java (Mad-
Kit). This agent based simulator is pseudo-parallel and cen-
tralised in order to compare the total execution time without
taking into account thread management costs.

In the agent solution, in order to avoid systematic spread
of all information to all agents, the environment delivers to
each agent the status of other agents located in their percep-
tion distance. We consider the perception distance and the
propagation distance τ to be the same, i.e. the minimum to



Figure 6: Hysteresis loops in a group of 5 agents
with σ = 0.1.

implement the emotional dynamics while not creating undue
overhead. The agents then use this information to update
their emotions using the same formula of emotional conta-
gion.

The initialisation of the simulation parameters are the
same as for the previous series. Simulation ends when the
emotional state of all agents is stable. Each simulation is
run 100 times. The same pseudo-random values generator
seeds are used to initialise the two simulations (computation
by the environment and by the agents) in order to check the
comparability of situations. Since the information used to
compute emotional contagion is the same, the two solutions
produce the same result at each time step.

We compare the performance of these two architectures in
terms of run-time in function of the number of agents and
in function of the perception distance.

5.1 Number of agents
Figure 7 shows the execution time until stabilisation for a

number of agents ranging from 25 to 1521. The computation
time is always lower using the environment than through
the agents. The time savings associated with the use of the
environment is 52% for 144 agents and only 11% for 1521
agents.

In value terms, the gain increases with the size (36 ms for
144 agents to 503 ms for 1521 agents), but the portion of this
cost is low compared to the overload caused by the number
of agents regardless of the emotional contagion method used.

5.2 Perception distance
We then focus on the effect of the perception distance on

the execution time. The results are summarised in Figure 8.
Figure 8(a) shows two trends: up to 50, the execution time
lowers, then it increases sharply for τ equal to 60.

The general shape of the curves corresponds to the mecha-
nism itself: at the beginning, the more τ increases, the more
the simulation stabilises quickly. This is because the calcu-
lation is less local, and the agents immediately take into ac-
count more of their neighbours. This effect has an impact on
the final proportions of influenced agents (when τ increases,
the emotional contagion is logarithmically stronger). Once
above a threshold, here 50, the execution time increases

Figure 7: Total run-time in function of the number
of agents

sharply. This is explained by a bigger difficulty of stabil-
isation when each agent is influenced by many other agents
(about 25 agents for τ = 50), which are themselves subject
to other influences.

Because the first curve does not allow an easy compari-
son between the two architectures, we generated a second
figure (Figure 8(b)) with standardised results (100% is the
execution time of the longest simulation). Regarding the
comparison between the environment computation and the
agents computation, we observe that the more τ increases,
the more it is interesting to perform the calculations with the
environment. Predictably, the computation time is directly
related to the size of information exchanged and computed
between agents.

As for the experiments on the number of agents, it is al-
ways more efficient to make the computation performed by
the environment than by the agents. The gain ranges from
8.5% for τ = 10 to 69% for τ = 60.

6. DISCUSSION AND CONCLUSION
In this paper, we proposed to calculate the emotional dy-

namics within a multi-agent architecture. This mechanism
is based on three dynamics: event, temporal and external.
Events impact the emotions depending on the internal state
of the agent and its perception of the event. Temporal phe-
nomenon represents the dynamic stabilisation of emotions
over time. External dynamic is the emotional contagion be-
tween agents.

The calculation of a part of the internal state of the agent
based on its equivalent in the internal state of other agents
has been used in other social simulations based on reactive
agents. For example, the model satisfaction/altruism [22] in
which the spread of agents’ state improves cooperation and
conflict resolution between agents. The IRM4S model [16] is
an adaptation of an influence-reaction model for simulation,
the body responsibilities being separated between the agent
and the environment.

Several other frameworks for improved environment and
body architectures have been proposed [17,18,26]. Platon et
al. [18] have introduced the concept of over-sensing: agents
have soft-bodies that have public states, which are medi-



(a) Run time in function of τ

(b) Normalized computation cost via the environment
and additional cost via the agents

Figure 8: Total run time in function of τ

ated (both for visibility and accessibility) by the environ-
ment. The information on modifications to the public states
is spread throughout the environment. Nevertheless, the
model does not explicitly take architectural issues into ac-
count, and even if the agents are observable, the body model
is in fact empty, relying on the environment for the calcu-
lus. Programmable tuple-spaces such as TuCSoN [17], or
artifacts [19] could be a way to implement the MA/SDEC
architecture, by programming the body and environment re-
sponsibilities as reactions.

About the MA/SDEC architecture, compared with a cal-
culation in each agent, this modelling of embodied agent
thanks to the environment has two advantages: first, the
agent architecture is focused on high-level decisions, while
the environment manage a part of the complexity of the
agent regarding the low-level mechanisms. Then, regard-
ing the computational cost, the encapsulation of this service
in the environment does not increase the overall cost. It
permits to share part of the calculations, instead of recalcu-
lating them in each agent.

Our simulations showed a gain in run-time execution (de-
pending on the parameters and the size of the MAS) of the
approach via the environment in comparison with purely

agent approach. However, using the environment can cre-
ate a bottleneck if the environment is not itself distributed.
It is important to note that delegating part of the compu-
tation to the environment (considered as an architectural
abstraction) does not necessarily imply a centralisation of
execution. In the case of the simulation of a physical space,
it can be divided into areas distributed across multiple hosts
where synchronisation is facilitated by the introduction of a
distance perception.

The bodies of the agents can be controlled by the environ-
ment in which services are in the MAS platform. However,
some authors propose to create software body that are not
part of the environment, e.g. [23] in order to control the an-
imation of conversational agents. Such a component could
be used to manage the temporal dynamics of emotions, used
as an interface with the mechanism of emotional contagion
and emotional variations control mechanism.

The MA/SDEC architecture describes the dynamics and
responsibilities of each MAS component, but does not rely
on a particular representation of emotion and personality.
Although we propose functions for the dynamics of the emo-
tions, those can be replaced for particular settings, e.g. groups
with known social topology. Hence any group contagion
model such as [3] can be used to manage external dynamics.

Further works include the study of the sensibility of the
model to other parameters. A recent review of psychological
studies [6] has shown the existence of moderating factors of
emotional contagion, such as social power or gender, which
were simplified in this article. From the architecture view-
point, these could be included in the bodies or minds of the
agents.

Finally, the approach based on embodied agents, in which
the relationship between mind, body and environment are
strictly formalised should facilitate the modelling of human
processes. In particular, the choice of removing from the
control module (i.e. from the mind / autonomous agent)
some low level calculations, such as emotional contagion or
the physical aspects, can help to simplify its design. More
research is needed to better understand how MAS designers
can apply this principle to all cases where the agents are
located and can therefore interact with an environment, and
propose an adequate methodology.
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