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Abstract 11 

The availability of combine yield monitors since the early 1990’s means that long time-series (10+ years) of yield 12 
data are now available in many arable production systems. Despite this, yield data and maps are still under-13 
exploited and under-valued by professionals in the agricultural sector. These historical data need to be better 14 
considered and analyzed because they are the only audited means by which growers and practitioners can assess 15 
the spatio-temporal yield response within a field. When done, time-series of yield maps are mostly processed by 16 
classification-based algorithms to generate spatial and temporal yield stability maps or to provide yield or 17 
management classes. This work details an alternate segmentation-based methodology to first generate and then 18 
characterize contiguous within-field yield zones from historical yield data. It operates on the yield data rather than 19 
interpolated yield maps. A seeded region growing algorithm is proposed that enables both the specification of 20 
seeds and zone segmentation in a multivariate (multi-temporal yield) attribute space. Novel metrics to assess the 21 
yield zoning are proposed that are derived from textural image analysis. The zoning algorithm and metrics were 22 
applied to two fields with long time-series (6+ years) of yield data in combinable crops. The two case studies 23 
showed that the proposed zone-based approach was effective in delimitating relevant within-field yield zones. The 24 
generated zones had differing temporal yield responses between neighbouring zones that were of agronomic 25 
significant and interest to the production systems. As this is a first attempt to apply a segmentation algorithm to 26 
yield data, areas for future development applications are also proposed. 27 

Keywords: co-occurrence matrices, historical yield data, temporal stability, segmentation, within-field yield 28 
zones 29 

 30 

1. Introduction 31 

Yield monitors mounted on combine harvesters have been available since the early 1990’s. However, 32 
yield data still have difficulties in being a decisive component of the decision-making process in precision 33 
agriculture studies. In terms of the utility of yield data, multiple issues have been reported by the scientific 34 
community. First of all, it is acknowledged that the yield temporal variability is often stronger than the yield spatial 35 
variability, which can hinder analyses over short and long-time periods (Blackmore et al., 2003; Bramley and 36 
Hamilton, 2004; Eghball and Power, 1995; Lamb et al., 1997). This temporal variability is essentially due to non-37 
stable factors, such as climate patterns or the type of crops being grown each year (Basso et al., 2012). Multiple 38 
authors have stated that the number of years of yield data available to conduct yield temporal analyses was critical 39 
(Bakhsh et al., 2000; Kitchen et al., 2005) and some have even tried to propose a minimum number of years 40 
necessary to obtain reliable results (Ping and Dobermann, 2005). Secondly, it is clear that the spatial yield pattern 41 
results from an interaction of management, climate and soil conditions within a cropping season, which means that 42 
it is not possible to derive variable-rate application maps directly for a year n by solely relying on yield data in 43 
year n-1. On top of that, yield data often come with a large number of defective observations resulting from the 44 
pass of the combine harvester inside the fields. Some of these errors are widely reported in the literature, e.g. flow 45 
delay, filling and emptying times, abrupt speed changes or unknown cutting width when entering the crops (Arslan 46 
and Colvin, 2002; Sudduth and Drummond, 2007). These errors, if not accounted for, can influence agronomical 47 
decisions over the fields (Griffin et al., 2008). 48 

However, from a precision agriculture standpoint, these high-resolution yield data are a very valuable 49 
source of information that would be aberrant not to consider (Florin et al., 2009). Yield spatial patterns are a 50 
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valuable piece of information to better characterize the sources of spatial variability across the fields. Growers are 51 
interested to know about the mean yield spatial and temporal patterns over their fields so they can make informed 52 
and reliable management decisions.  It has been shown that, despite a strong temporal variability, it was often 53 
possible to detect consistent yield spatial patterns across years (Kitchen et al., 2005; Taylor et al., 2007). Be aware 54 
that some patterns were found consistent even under different crops and varying climate conditions. Furthermore, 55 
yield spatial patterns can deliver relevant information with respect to soil characteristics within the field or can 56 
help depict the influence of other external factors, such as management practices and weather conditions (Diker et 57 
al., 2004). For instance, Taylor et al. (2007) showed that, in specific portions of their field study, crop rotation 58 
management in previous years originated variations in yield spatial patterns. Other authors have found that high-59 
yielding areas in dry years could, at the same time, be low-yielding areas in wet years which could give critical 60 
information with respect to within-field soil characteristics (Colvin et al., 1997; Sudduth et al., 1997; Taylor et al., 61 
2007). Another strong advantage of these yield datasets is their accessibility. Indeed, in most cases, harvest has to 62 
be made which means that these data can be collected yearly once growers have invested in yield monitors.  63 

 The delineation of management zones or management units has long been a subject of interest in precision 64 
agriculture because it provides growers with a simple representation of their field. Such zones are defined as 65 
spatially contiguous areas over which specific management decisions are to be considered. More than often, 66 
management zones are found fragmented in space. This originates from a confusion between the concepts of 67 
management classes and management zones (Pedroso et al., 2010). In fact, management classes gather all the 68 
management zones over which a specific management decision is to be considered. Authors mostly use 69 
classification-based techniques, mostly k-means clustering and its fuzzy variant, the fuzzy c-means algorithm (Li 70 
et al., 2007; Moral et al., 2010) to delineate these management units. Some others have also proposed some post-71 
processing methods to overcome the fragmentation issue (Ping and Dobermann, 2003). However, as non-spatial 72 
algorithms, classification-based methods do not seem to be the most relevant approaches to delineate spatially 73 
contiguous areas. One solution could be to make use of object-oriented methodologies from the image processing 74 
domain, which aim at delineating objects inside an image (Leroux et al., 2017; Pedroso et al., 2010; Roudier et al., 75 
2008).  76 

 Despite the availability of yield data, spatio-temporal yield pattern analysis is not widely done, and when 77 
done, is typically applied in an ad-hoc or qualitative manner. The industry is missing effective and easily 78 
implemented approaches for spatio-temporal yield pattern analysis. The major contribution of this work is to 79 
propose a new methodology to analyze historical yield data so that growers and agronomic advisors can better 80 
understand the spatio-temporal yield variability in their fields. It must be clear that that the objective of this study 81 
is only to look information contained within yield data. It is not, as is typically done with management units, an 82 
approach to integrate and simplify crop and environmental variables. In the first instance, the method utilizes a 83 
novel multi-dimensional segmentation algorithm that can be applied directly to yield data to define within-field 84 
yield zones. The method is therefore not dependent on map production or co-location of information from disparate 85 
years. To assess the magnitude and the temporal stability of the yield response within the yield zones, novel metrics 86 
adapted from co-occurrence matrix and image textural analyses are then introduced. The algorithm and metrics 87 
are derived and then applied to two case studies from arable production systems in France and the UK. The 88 
applicability of this novel approach is then discussed including the ability to deliver the processing within a 89 
simplified framework that is applicable to non-scientific end-users.  Finally, the questions and concerns requiring 90 
further work are discussed in the last section.  91 

  92 

2. Material and methods 93 
2.1 Study sites 94 

The study was conducted on a 20-ha field in England near Amble, Northumberland (WGS84 datum: E: -95 
1.62, N: 55.37) and on a 31-ha field in the north of France near Evreux (WGS84 datum: E: 0.78, N: 48.95). Both 96 
fields are cropped in a wheat (Triticum aestivum) and canola (Brassica napus) rotation and exhibit a relatively 97 
strong yield spatial structure. For the English field, wheat yield data were acquired for six years between 2004 and 98 
2015 with a Case combine harvester operating a 10-m cutting front. For the French field, eight years of yield 99 
mapping were available spanning the 2003-2011 period. Over the years, the field was mostly harvested with a 100 
Claas combine using a 6-m front.  101 

 102 
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 103 

2.2 Pre-processing multi-year yield data 104 

Yield data were first cleaned to remove technical errors commonly reported in the literature, e.g. speed changes, 105 
unknown cutting width when entering the crop, filling and emptying times and abnormal yield values among others 106 
(Arslan and Colvin, 2002; Sudduth and Drummond, 2007). To compare yield data from multiple years with 107 
possible significant temporal variations, yield observations were standardized for each year m with a mean of zero 108 
and a variance of one (Eq. 1): 109 

 
�̃�𝑚(𝑖) =  

𝑌𝑚(𝑖) − �̅�𝑚

𝜎𝑚

 Eq. 1 

 110 

Where �̃�𝑚(𝑖) is the ith scaled and centered yield observation in year m, 𝑌𝑚(𝑖) is the ith yield observation in year m, 111 
𝑌𝑚
̅̅̅̅  is the mean yield in year m and 𝜎𝑚 is the yield standard deviation in year m. 112 

Following a methodology proposed by Blackmore et al. (2003) and Marques da Silva (2006), a grid composed of 113 
20x20m pixels, and whose orientation followed that of the harvested rows, was superimposed on the yield data. 114 
For each pixel of the grid, yield values within the pixel were first averaged by year so as to obtain one yield value 115 
for each pixel and each year. The objective was to make sure that each year had the same influence in each pixel 116 
even if the number of observations falling into each pixel was different from year to year. Empty pixels in specific 117 
years due to missing yield observations were given the mean yield value over the years in the same pixel. 118 

2.3 Delineating within-field yield zones 119 
2.3.1 General description of the algorithm 120 

 121 
The objective is to delineate within-field yield zones using a time series of yield data. Within-field yield 122 

zones were derived from a seeded region growing algorithm (Adams and Bischof, 1994; Mehnert and Jackway, 123 
1997). This procedure, arising from the image processing domain, starts by selecting a set S of k observations [S1, 124 
S2, …, Sk], referred to as the seeds, from which zones are grown. Once the seeds have been chosen, the remaining 125 
observations inside the field, i.e. the non-seeds, are recursively associated to an existing seed, given similarity 126 
measures between observations. As a consequence, this process expands and grows the zones from the selected 127 
seeds. The growing algorithm stops when all the observations have been associated to a zone. Such a procedure 128 
has already been applied in the precision agriculture domain but solely with regard to one single agronomic 129 
variable (Leroux et al., 2017; Pedroso et al., 2010; Zane et al., 2013). Here, the objective is to extend the procedure 130 
to a multi-dimensional case for which there is a need to account for several yield data at the same time. Note that 131 
the proposed methodology presents some similarities with that of Leroux et al. (2017).   132 

 133 
2.3.2 The Multivariate Distance between Pixel Vectors 134 

Several algorithms have been proposed in the literature to segment multiple layers of information, and especially 135 
multi-band images, into reliable and informative spatial objects prior to the spectral classification of these 136 
delineated objects (Fauvel et al., 2011; Fauvel et al., 2012; Noyel et al., 2007). Most of these methods make use 137 
of morphological elements or watershed algorithms, which are extended to multivariate data. Among the different 138 
approaches to pass from a one-band image to a multi-band image, Tarabalka et al. (2010) have proposed to 139 
calculate a spectral distance between pixel vectors instead of single-valued pixels, where the vector consists of all 140 
the variables of interest within a given pixel. In their study, the authors refer to this spectral distance as a vectorial 141 
gradient. It is proposed here to make use of the same approach regarding the distance computation between 142 
neighbouring pixels. Let p be the number of layers considered and let 𝑥𝑖

𝑝
 be the ith pixel vector of p values in the 143 

dataset. The multivariate distance between two pixel’ vectors 𝑥𝑖
𝑝
 and 𝑥𝑗

𝑝
 is set as a multivariate euclidean distance 144 

(Eq. 2).  145 

 
d(𝑥𝑖

𝑝
,𝑥𝑗

𝑝
) = √𝑤1(𝑥𝑖

1 −  𝑥𝑗
1)

2
+  𝑤2(𝑥𝑖

2 −  𝑥𝑗
2)

2
+ ⋯ + 𝑤𝑝 (𝑥𝑖

𝑝
−  𝑥𝑗

𝑝
)

2

  

 

Eq. 2 

Where d(𝑥𝑖
𝑝
,𝑥𝑗

𝑝
) is the multivariate euclidean distance between the pixel vectors 𝑥𝑖

𝑝
 and 𝑥𝑗

𝑝
, 𝑤𝑝 is the weight 146 

associated to the layer p, 𝑥𝑖
1 is the value of the first layer of the ith pixel vector.  147 
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In this study, it is considered that all the available years are given the same importance, i.e all 𝑤𝑝 are set to 1. 148 

2.3.3 The creation of a variance map 149 

Within-field yield zones are defined here as contiguous spatial entities over which the yield is supposed 150 
to be homogeneous. The mean zone yield should however be relatively different to that of a neighbouring zone. 151 
As such, by considering the variance between neighbouring pixels, the variance should be relatively low within a 152 
zone and exhibit a quite strong peak between pixels belonging to different zones. Be aware that here, neighbouring 153 
pixels are pixel vectors, which means that the variance is calculated between vectors of pixels and not between 154 
single-valued pixels (Eq. 3). If a seed was to be placed inside a homogeneous zone, i.e. with low variance, and the 155 
zone was grown until the boundaries of that zone are reached, i.e. a strong increase in the variance (which will be 156 
defined in next section), this region should be well delineated. 157 

The neighbourhood of each pixel vector 𝑥𝑖
𝑝
 was defined as follows: Let 𝑁4(𝑥𝑖

𝑝
) and 𝑁8(𝑥𝑖

𝑝
) be the 4-order and 8-158 

order neighbourhood of the ith pixel vector respectively (Fig. 1). 𝐻4(𝑥𝑖
𝑝

) is the group of observations such that 𝑥𝑖
𝑝
 159 

∪  𝑁4(𝑥𝑖
𝑝

). As such, 𝐻4(𝑥𝑖
𝑝

) contains five observations (j=5), i.e. one central observations and four neighbouring 160 

observations. 𝐻4(𝑥𝑖
𝑝

)
𝑗
 is therefore the jth observation in the neighbourhood. Same goes for 𝐻8(𝑥𝑖

𝑝
) which contains 161 

nine observations (j=9). For each pixel vector 𝑥𝑖
𝑝
, a variance metric 𝑉i was computed as follows: 162 

 𝑉𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛 (|𝐻8(𝑥𝑖
𝑝

)
𝑗

− 𝑚𝑒𝑑𝑖𝑎𝑛 (𝐻8(𝑥𝑖
𝑝

))|) Eq. 3 

 163 

Where (𝐻8(𝑥𝑖
𝑝

)
𝑗

− 𝑚𝑒𝑑𝑖𝑎𝑛 𝐻8(𝑥𝑖
𝑝

)) is a set of distances, i.e. as defined in Eq. 2, between each pixel vector 164 

belonging to 𝐻8(𝑥𝑖
𝑝

) and the median of the values of the pixel vectors inside 𝐻8(𝑥𝑖
𝑝

) 165 

The formula beyond 𝑉i is in fact the median absolute deviation, a more robust estimate of the variance.  166 

 167 

Figure 1. The four- and eight-order neighbourhoods of an observation. 168 

2.3.5  The Seed Selection Process 169 

At least one seed has to be placed inside each within-field zone to be delineated. As the zones are 170 
expanded from the initial k seeds, seeds must be carefully located inside the field. Seeds have to share relatively 171 
strong characteristics with the observations inside their neighbourhood to make sure that the resulting regions will 172 
be homogeneous. As such, seeds were selected as the observations with the lowest variance with respect to their 173 
neighbourhood, i.e. the lowest Vi. To prevent multiple seeds from characterizing the same within-field zone and 174 
to prevent noisy observations from strongly affecting the delineation process, a variance homogeneity criterion 175 
was put into place. This criterion is a threshold below which it is considered that there is no need to place another 176 
seed because observations are still consistent with the seed previously selected. To define this threshold, the 177 
amount of noise 𝜃i around each pixel 𝑥𝑖

𝑝
 was first calculated as in Eq. 4:  178 

 𝜃i = 𝜎(𝐻8(𝑉𝑖)) Eq. 4 
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 179 

Where 𝜎 stands for standard deviation and 𝐻8(𝑉𝑖) is the set of variances belonging to the 8-order neighbourhood 180 
of the ith pixel. 181 

The step in variance, Thresh, is then defined as the mean of the 𝜃𝑖 distribution. The seed selection process consists 182 
in the following steps: 183 

a. Define G1 as the group containing all the unassigned pixels, G2 as the group containing all the 184 
seeds and G3 as the group containing all the assigned pixels. At first, all observations belong to 185 
G1 186 

b. Calculate the step in variance, Thresh as defined above 187 
c. Order the observations from the lowest to highest 𝑉𝑖 188 
d. Select the first seed, 𝑆1

𝑝
 as the observation with the lowest 𝑉𝑖 and put it in G2 189 

e. For each pixel 𝑥𝑖
𝑝
 inside 𝑁4(𝑆1

𝑝
), if the step in variance is lower than Thresh between 𝑉𝑆1

 and 190 

𝑉𝑥𝑖
, then 𝑥𝑖

𝑝
 is put in G3 because it is considered that 𝑥𝑖

𝑝
 is consistent with 𝑆1

𝑝
 191 

f. Repeat step e. for each observation 𝑥𝑗
𝑝
 inside 𝑁4(𝑥𝑖

𝑝
),  and so on until there are no neighbours 192 

for which the step in variance is lower than Thresh. Be aware that here, the step in variance takes 193 
into account the spatial proximity as it is evaluated between 𝑉𝑖 and 𝑉𝑗. 194 

g. Repeat step d. to f. with the next seed (that with the lowest 𝑉𝑖 inside the new set G1 resulting 195 
from the previous iteration) until no future seed can be selected. 196 

The 4-order neighbourhood 𝑁4(𝑥𝑖
𝑝

) was chosen to obtain more compact zones by preventing the zones from 197 
expanding diagonally. 198 

2.3.6 The growing of the initial regions 199 
 200 
The set S of k seeds, i.e. the group G2 as defined in the previous section, constitutes the starting points of 201 

the zones within the fields (see Section 2.3.1). At the end of the growing procedure, there will be as many zones 202 
as the number of initial seeds. It must be clear that the methodology detailed in section 2.3.5 was only done to 203 
select locations for seeds.  The growing of the zones is detailed hereafter. Let Z be the set of k zones inside the 204 
fields. It must be clear that the zth zone 𝑍𝑧

𝑝
 is related to the seed 𝑆𝑧

𝑝
. At each iteration of the region growing 205 

algorithm, the pixel vector 𝑥𝑖
𝑝
 with the smallest multivariate distance to a neighbouring zone 𝑍𝑧

𝑝
, i.e. the smallest 206 

d(𝑥𝑖
𝑝
, 𝑍𝑧

𝑝
), is associated to 𝑍𝑧

𝑝
. Be aware that as 𝑍𝑧

𝑝
 can contain new pixels at each iteration, each value of the p-207 

vector associated to 𝑍𝑧
𝑝

 is calculated as the mean of the values of all the pixels belonging to 𝑍𝑧
𝑝

. Note that the zones 208 
are grown pixel by pixel, i.e. one pixel is attributed to an existing zone at each iteration. The process stops when 209 
all the pixels have been associated to an existing zone. 210 

 211 

2.4 Evaluation of relevance of the zoning 212 

The objective is to evaluate whether the delineated zones encompass the yield spatial patterns for each year under 213 
consideration. If so, in each year m, each yield observation inside a zone 𝑍𝑧 should be relatively similar to the 214 
mean yield in 𝑍𝑧. On top of that, if the yield variability is spatially structured, the mean yield in 𝑍𝑧 should be quite 215 
different to the mean yield in neighbouring zones. Here, it is proposed to make use of a variance reduction-based 216 
approach inspired from Fraisse et al. (2001). This method was extended to the multivariate case to cope with the 217 
analysis of a time-series of historical yield datasets. The variance reduction index, referred to as RV, depicts to 218 
what extent the zoning accounts for the spatial variability within the field or, in other words, to what extent the 219 
zoning delimitates homogeneous zones. The RV index will be first described in the univariate case, i.e. 𝑅𝑉𝑚 for a 220 
given year m, to ease the understanding and will then be extended to the multivariate case. In this study, only the 221 
index RV will be computed. For a specific year m, the index 𝑅𝑉𝑚 is calculated as follows: 222 

 
𝑅𝑉𝑚 = 1 − 

𝜎𝑚
2 (𝑍)

𝜎𝑚
2

 Eq. 5 

 223 
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Where 𝜎𝑚 is the yield standard deviation in year m and 𝜎𝑚
2 (𝑍) is the area-weighted yield variance in year m given 224 

a zoning Z.  The calculation of this latter term is defined in Eq. 6: 225 

 𝜎𝑚
2 (𝑍) = ∑(𝜔𝑍𝑧

 ×  𝜎𝑚
2 (𝑍𝑧))

𝑘

𝑧=1

 Eq. 6 

 226 

Where 𝜔𝑍𝑧
 is the weighted area of the zone 𝑍𝑧, k is the number of seeds and consequently of zones in the field, 227 

and 𝜎𝑚
2 (𝑍𝑧) is the yield variance within the zone 𝑍𝑧 in year m 228 

To extend the 𝑅𝑉𝑚 index to the multivariate case and, as such, evaluate the performance of the zoning algorithm 229 
over multiple years of yield data, there is a need to refine the variance terms presented in Eq. 5. and Eq. 6. In the 230 
unidimensional case, the yield variance within the zone 𝑍𝑧 in year m can be simply written as a sum of squared 231 
differences between the yield of each observation xi belonging to 𝑍𝑧 and the mean yield value inside 𝑍𝑧: 232 

 233 

 𝜎𝑚
2 (𝑍𝑧) =  

1

𝑛𝑍

∑ (𝑌𝑚(𝑖) − 𝑌𝑚
̅̅̅̅ (𝑍𝑧))

2

𝑥𝑖𝜖 𝑍𝑧

 Eq. 7 

 234 

Where 𝑛𝑍 is the number of observations inside the zone 𝑍𝑧, 𝑌𝑚(𝑖) is the yield of the ith observation in year m and 235 
𝑌𝑚
̅̅̅̅ (𝑍𝑧) is the mean yield value inside 𝑍𝑧 in year m. Be aware that the calculation is done with the standardized 236 
yield values. This notation has not been added for ease of reading. 237 

By using the multivariate euclidean distance defined in Eq. 2, it becomes possible to calculate the yield variance 238 
inside 𝑍𝑧 over all the p years of study:  239 

 𝜎2(𝑍𝑧) =  
1

𝑛𝑍

∑ d(𝑌𝑖
𝑝

, 𝑍𝑧
𝑝

)2

𝑥𝑖𝜖 𝑍𝑧

 Eq. 8 

 240 

Where d(𝑌𝑖
𝑝

, 𝑍𝑧
𝑝

) is the multivariate euclidean distance between a pixel vector 𝑌𝑖
𝑝

 containing the yield values of 241 

the ith pixel for each of the p years, and a vector 𝑍𝑧
𝑝

 containing the mean yield values in the zone 𝑍𝑧 for each of the 242 
p years.  243 

The multivariate RV index can then be computed as: 244 

 
𝑅𝑉 = 1 − 

𝜎2(𝑍)

𝜎2
 Eq. 9 

 245 

Where 𝜎2 is the yield variance over the p years, 𝜎2(𝑍) is the area-weighted yield variance of the proposed zoning 246 
over the p years.  247 

Note that 𝜎2 is calculated similarly as 𝜎2(𝑍), i.e. in the multivariate space, except that no zoning is considered. 248 
The RV index ranges from 0, i.e. very poor delineation to 1, i.e. perfect delineation.  249 

2.5 Characterization of the within-field yield zones 250 

Growers are interested to know about the mean yield spatial and temporal patterns over their fields so they can 251 
make informed and reliable management decisions. In most published studies, spatial and temporal stability maps 252 
are generated by computing mean and variance yield data over the years (Blackmore et al., 2003; Ping and 253 
Dobermann, 2005). Thresholds are generally defined empirically to separate (i) high from low yielding areas and 254 
(ii) temporally stable from variable zones. Here, the spatial and temporal stability maps are proposed to be 255 
computed at the within-zone level, given that a zoning has been performed previously, and following a 256 
methodology inspired from the image processing domain, i.e. using co-occurence matrices and Haralick textural 257 
indices (Haralick et al., 1973). 258 
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2.5.1 Co-occurrence matrices and yield multi-temporal analysis 259 

Co-occurence matrices have been originally dedicated to the analysis of texture information inside images. Mostly 260 
referred to as 𝑃(𝑖, 𝑗, 𝑑, 𝜃), these matrices contain the relative frequencies 𝑝(𝑖, 𝑗) with which two neighbouring 261 
pixels of an image separated by a distance d with the orientation 𝜃, occur on the image, one with the information 262 
i and the other with the information j (Haralick et al. 1973). To perform a multi-temporal yield analysis at the 263 
within-zone level, this same approach can be used to evaluate the relative frequencies 𝑝(𝑖, 𝑗) with which a zone Zz 264 
has a yield level i in year m and a yield level j in a consecutive year, i.e. d is the temporal distance between 265 
consecutive available years. Be aware that the term ‘consecutive available years’ is used because yield data is 266 
missing for some years and with crop rotations, this will be the norm for any temporal yield data analysis. 267 
Regarding the proposed methodology, 𝜃 would be 0° as the analysis would be made zone by zone with a temporal 268 
sequence of yield levels (Fig. 2). In the case of a multi-temporal yield analysis, co-occurences matrices 𝑃(𝑖, 𝑗, 𝑑, 𝜃) 269 
can then be written 𝑃(𝑖, 𝑗, 1,0°). 270 

 271 

2.5.2 Generation of a temporal sequence of yield level for each within-field zone 272 

For a given year m, each zone within the field was characterized by its mean yield level. In order to ease the 273 
computation of the co-occurrence matrix, the mean yield value of each zone in year m was given a label according 274 
to a classification in c classes. Given that yield values are standardized at the beginning of the method with a mean 275 
of zero and a variance of one (Eq. 1), 5 classes of equal intervals were computed between -1 and 1 and labelled 276 
‘Very Low’ [-1 : -0.6], ‘Low’ [-0.6 : -0.2], ‘Medium’ [-0.2 : 0.2], ‘High’ [0.2 : 0.6], and ‘Very High’ [0.6 : 1]. For 277 
a given zone Zz and a year m, a mean yield level falling into one of these intervals was given the corresponding 278 
label of the interval. If the mean yield value of a zone was < -1, it was labelled as ‘Very Low’ and likewise if it 279 
was > 1 then it was labelled ‘Very High’. 280 

 281 

2.5.3 Computation of specific Haralick indexes 282 

Once the temporal sequence of yield level has been created for each zone, the co-occurrence matrix 𝑃(𝑖, 𝑗, 1,0°) 283 
can be generated. These matrices were normalized to lessen the influence of the number of years available for the 284 
analysis (Fig. 2). To evaluate the spatial and temporal stability of the yield patterns within the field, two textural-285 
based indexes defined in Haralick et al. (1973) were computed, i.e. respectively the Sum Average and Sum of 286 
Squares (Fig. 2). Those metrics, referred to as the sixth and fourth Haralick indices are defined as follows: 287 

 
𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 =  ∑ ∑(𝑖 −  𝜇)2 × 𝑝(𝑖, 𝑗)

𝑐

𝑗=1

𝑐

𝑖=1

 Eq. 10 

Where 𝜇 is the mean of the yield classes within the temporal yield sequence and 𝑝(𝑖, 𝑗) is the probability of having 288 
a yield class j consecutively to a class i in the yield temporal sequence. 289 

 

𝑆𝑢𝑚 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =  ∑ 𝑡 × 𝑝𝑥+𝑦(𝑡)

2𝑐

𝑡=2

 
Eq. 11 

Where 𝑝𝑥+𝑦(𝑡) is computed as stated below: 290 

 
     𝑝𝑥+𝑦(𝑡) =  ∑ ∑ 𝑝(𝑖, 𝑗)  , 𝑖 + 𝑗 = 𝑡

𝑐

𝑗=1

𝑐

𝑖=1

 
Eq. 12 

The higher the Sum Average index, the higher the production level over the years. The Sum of Squares ranges 291 
between 0 and 1. The closer to 0, the stronger the temporal stability of the yield patterns. The use of these two 292 
metrics will allow to obtain a range of spatial and temporal stability levels to help characterize the yield behaviour 293 
at the within-zone level across years. 294 

The process involved in the co-occurrence matrix analysis and derivation of the Sum of Squares and Sum Average 295 
metrics is then illustrated in Fig. 2. Note that in Fig 2, the number of classes has been reduced (c = 3, ‘Low’, 296 
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‘Medium’ and ‘High’) for simplicity. The process of 1. Labelling, 2. Co-occurrence matrix derivation, 3. Matrix 297 
normalization and 4. The metric calculations are shown for two contrasting scenarios representing a yield zone 298 
with low temporal variance and low yield level (Scenario 1) and yield zone with a high temporal variance and 299 
medium to high yield level (Scenario 2).  300 

 301 

Figure 2. Characterization of the within-field yield zones in terms of spatial and temporal stability. Low(m) means 302 
that the zone has a low yield level in year m. In the top-left hand corner of the co-occurrence matrix for the 303 
sequence 1, the number 4 means that there were four occurrences of the zone being a low-yielding area in year 304 
m-1 and in year m. Note that the temporal sequence is read from left to right (two occurrences) but also from right 305 
to left (two occurrences). 306 

A simple flowchart of the proposed yield multi-temporal analysis is proposed in Figure 3. The whole methodology 307 
was developed using the R statistical environment (R Core Team, 2013). 308 

 309 

 310 

Figure 3. Workflow of the proposed yield multi-temporal analysis. 311 

 312 
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3 Results and discussion 313 
3.1 Summary of yield information from the case studies. 314 

Figures 4 and 5 show the spatial patterns in the wheat and canola yield data for the years with available data in the 315 
two fields under investigation after the yield abnormal values were removed. Associated yield descriptive statistics 316 
can be found in Table 1. From a first visual inspection and considering each crop separately, it appears that the 317 
spatial yield patterns are consistent within both fields over time. For Field 1, in 2004, 2007 and 2015, the western-318 
part of the field is less productive than the eastern-side. This pattern is reversed in 2012 when it clearly appears 319 
that the normally higher-yielding areas in the eastern-part of the field become the lower-yielding areas. This year, 320 
2012, was characterized by a wet growing season that resulted in the lighter soils in the western-part of the field 321 
being less water-logged and more productive in this year (Tab. 1). In Field 1, the canola spatial yield patterns do 322 
not seem to exhibit any temporal stability, nor do they align with the wheat yield patterns. Moreover, canola 323 
observations are noisier and spatial patterns are not as visually distinguishable as those of wheat. From a general 324 
perspective, the annual yield variability is relatively low, the coefficient of variation being less than 16% (Tab. 1). 325 
Wheat production in Field 1 has significantly increased from 2004 to 2015, starting with a mean at 7.8 tons ha-1 326 
(2004) and rising to reaching 12.3 (2015) tons ha-1. Note that the minimum yield values remain quite low while 327 
the maximum values increase significantly. The rainfall conditions in 2012 did not alter this increasing trend. 328 

Table 1. Yield descriptive statistics for the study field over six years. Yield values are reported in tons per hectare. 329 
Rainfall is reported from September to August.. 330 

Field Year 
Rainfall  

(mm) 
Crop Min 1st quartile Mean 3rd quartile Max CV (%) 

1 

2004 802 Wheat 3.3 7.0 7.8 8.7 11.0 15.8 

2007 652 Wheat 5.5 9.0 9.6 10.1 12.0 8.9 

2011 582 Canola 2.8 4.7 5.0 5.3 6.2 9.0 

2012 1160 Winter Wheat 5.0 9.2 9.9 10.7 13.4 12.1 

2014 631 Canola 2.0 3.3 3.7 4.1 5.4 15.6 

2015 401 Winter Wheat 5.4 11.3 12.3 13.4 16.8 13.1 

          

2 

2003 708 Wheat 4.0 7.7 9.0 10.7 15.2 20.4 

2004 614 Canola 0.2 1.7 3.1 4.3 8.4 54.0 

2005 576 Wheat 7.1 9.5 9.9 10.3 12.0 6.1 

2006 668 Canola 0.1 1.7 2.4 3.0 6.3 42.8 

2007 775 Wheat 5.6 8.9 9.5 10.1 12.0 9.1 

2009 550 Wheat 7.9 11.2 12.0 12.8 15.0 9.1 

2010 612 Canola 2.1 4.4 5.1 5.7 8.1 20.1 

2011 717 Wheat 4.7 8.5 9.6 10.7 13.2 15.4 

 331 

Interestingly, regarding Field 2, the crop type did not affect the spatial yield patterns observed in the field (Fig. 5). 332 
In this field, the northern side exhibited generally low yield values, associated with relatively light soils, while the 333 
southern section was found to be a high-yielding area. This pattern appears to be reversed for the wheat rotation 334 
in 2004 and 2007. Note that the spatial pattern in 2007 is again due to increased in-season precipitation and further 335 
interaction with soil characteristics. In 2003, the wheat yield data appears noisier than in other years, which makes 336 
the overall yield pattern more difficult to visually detect. Yield observations are also much more variable, high 337 
coefficient of variation, when canola is cropped (Tab. 1). Contrary to Field 1, there does not seem to be a clear 338 
trend towards increasing yields over time. 339 

When developing this methodology, the authors were aware that it may be difficult to compare the spatial patterns 340 
of different crops, such as wheat and canola that belong to different genera that have different yield levels, water 341 
requirements and root systems among others. All the spatial patterns were nonetheless plotted to see whether it 342 
was conceivable to aggregate the information arising from these two crops under the specific conditions of the 343 
field study (Fig. 4 and Fig. 5). Because the spatial canola yield patterns showed little structure and little 344 
resemblance to the wheat yield patterns in Field 1, it was decided not to include them in the historical yield data 345 
analysis. The main reason for this was to ensure growers were not provided with abnormal or irrelevant information 346 
at the end of the analysis. Unfortunately, only two years canola yield data were available for this study. More years 347 
would have certainly have enabled a clearer understanding of the spatial yield patterns for this crop in this field. 348 
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In contrast, for Field 2 the yield patterns were found to be very consistent within and between crop types so all the 349 
years were included in the analysis. Note that this study might still have been conducted for both crops separately. 350 
While the intent is to develop an automated approach to yield pattern analysis, ultimately the quality of the analysis 351 
will be linked to the choice of data used. Growers and agronomists do need to be conscious of the quality and 352 
utility of any data included into the multi-temporal yield pattern analysis. 353 

 354 

Figure 4. Yield spatial patterns in Field 1 for the six years over the 2004-2015 period. 355 

 356 

 357 

Figure 5. Yield spatial patterns in Field 2 for the eight years over the 2004-2011 period 358 

 359 

 360 

 361 
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3.2 Evaluation of the resulting within-field yield zones 362 

The delineation of within-field yield zones appears to be consistent with what could stem from intuitive delineation 363 
(Fig. 6 and 7). For both fields the zoning exhibited relatively high RV values, respectively 0.65 and 0.64 for Field 364 
1 and Field 2. Interestingly, both RV values are very similar despite the fact that the number of delineated zones 365 
and the number of years of yield mapping available are different for Field 1 and Field 2. In fact, the zoning could 366 
have been considered more reliable for Field 1 given that less zones were generated (Z = 13) but it must be 367 
understood that the zoning of Field 2 (Z = 17) involved a longer temporal yield sequence. These RV values can be 368 
considered high because the zones have been generated from simultaneous analysis of multiple yield, which means 369 
that the major yield spatial patterns across the years have been spotted. Note that while the zoning can be 370 
considered as being effective, there is still some noise and yield variance within the zones.  371 

 372 

Figure 6. Correspondence between yield spatial patterns and within-field yield zones in Field 1. 373 

 374 

 375 

Figure 7. Correspondence between yield spatial patterns and within-field yield zones in Field 2. 376 
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When looking at the delineated zones more precisely, it appears that in some years, specific zones might not be 377 
considered optimal. This is the case for instance for the zone in the north-eastern part of Field 2 for years such as 378 
2003 or 2010. However, it can also be seen that for the remaining years, this zone gathers relatively homogeneous 379 
observations. As the delineation accounts for all the years in a single run, it is sometimes difficult to spot year-380 
specific behaviours, especially if the deviations from the general patterns are not strong. These behaviours might 381 
be identified by lowering the threshold Thresh that was used in the methodology (Eq. 4). From a general 382 
perspective, the proposed algorithm delineated quite large and compact zones in both fields, which is considered 383 
agronomically desirable even if it is not statistically optimal. The smallest zones are mainly located near the 384 
boundaries of the fields, which is generally the place of lower and noisier yield observations. In both fields the 385 
transition between high and low-yielding areas is quite clear and it comes with a good level of spatial 386 
autocorrelation. These specificities obviously helped the zoning algorithm to delineate relevant within-field yield 387 
zones. 388 

Once these zones have been delineated, it is interesting to focus on the differences that these zones exhibit with 389 
their direct neighbours (Fig. 8). The major objective of the proposed approach was to delineate relevant within-390 
field yield zones, i.e. zones whose yield behaviour should diverge with that of their neighbours. In the case of 391 
similar yield trends across the years, neighbouring zones might benefit from being merged as no clear differences 392 
exist between them. In the comparison of Zone 1 with its direct neighbours (Fig 8), it is interesting to see how the 393 
rainfall conditions in 2012 affected the yield trends. The yield in Zone 4 substantially increased in 2012, which is 394 
likely due to increased precipitation on a lighter soil type overcoming limitations in soil available water on yield 395 
in other years. However, all the other neighbouring zones exhibit a decreased yield in 2012, indicating that higher 396 
rainfall rates have a negative impact on growing conditions in these areas of the field. Given the strong accordance 397 
between the yield trends in Zones 4 and 5, it might be desirable to merge these later to facilitate the interpretation 398 
of the maps. Note however that it does not prevent the yield-affecting factors in these two zones being different 399 
but the further analysis of these zones is beyond the scope of this work. Be aware that, in this methodology, unlike 400 
for example the segmentation algorithms proposed by Leroux et al. (2017), Pedroso et al. (2011), and Roudier et 401 
al. (2008), there is no option for region (zone) merging. The number of zones is preset from the seed selection 402 
process.  The only way to alter the number of zones is to influence the seed selection process. From a general 403 
perspective, neighbouring zones in both fields displayed distinct yield trends, validating the proposed zoning 404 
delineation.  405 

 406 

Figure 8. Within-field yield zones and corresponding boxplots regarding the mean yield inside neighbouring zones 407 
for Field 1. 408 

 409 

3.3 Analyzing the within-field zones in terms of yield level and temporal stability 410 

Figure 9 displays the derived yield zones along with the temporal stability of each delineated yield zone. When 411 
considering all the study years together, these maps seem to show that Field 1 is composed of (i) a large high-412 
yielding area in the northern-eastern part, (ii) relatively large zones with a medium yield level in the center of the 413 
field, and (iii) low-yielding areas near the boundaries. The temporal stability analysis suggests that the western 414 
side of the field has an unstable yield pattern over the years which might be of concern for future differential 415 
management. However, any differential management plan will need to consider managerial and environmental 416 
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conditions within the yield zones. The zones and conclusions here arise solely from the analysis of yield data with 417 
no other considerations. There is a need to account for the external factors that impacted the yield patterns, and 418 
more particularly the rainfall conditions. It has been discussed previously that the high amount of precipitation 419 
which occurred in 2012 in Field 1 (Tab. 1) completely reversed the expected spatial yield pattern (Fig. 4). By 420 
considering the four years of yield mapping simultaneously, Zone 4, which was most affected by the variability in 421 
rainfall conditions, was given a medium mean yield level over time and was considered temporally unstable. The 422 
analysis would have led to different conclusions if the wet growing season, i.e. 2012, had been processed 423 
separately. More specifically, Zone 4 would have been labelled a low yielding, temporally stable zone under 424 
normal growing conditions and a high yielding area in wet growing conditions. For Field 2, results showed that 425 
the spatial yield patterns were more stable over time than for Field 1. This is essentially due to the fact that only 426 
four years of yield mapping are available for Field 1 and one out of the four yield data exhibited a complete reverse 427 
yield pattern compared to the other years. Reverse yield patterns are also visible for Field 2 but the substantially 428 
higher number of years lessened their influence. It can also be seen that when more years are used, it is more 429 
difficult to reach a very low value of stability. Yield spatial stability patterns are also well represented in Field 2, 430 
with Zones 3 and 1 exhibiting the highest yield level. Contrary to the observed difference in yield temporal 431 
stability, both fields show a relatively similar range of yield variation. 432 

 433 

Figure 9. Yield level and temporal stability of the within-field zones in Field 1 and Field 2. 434 

The spatial and temporal stability metrics, i.e. Sum Average and Sum of Squares, are of interest as they enable a 435 
quantitative analysis across a relatively wide gradient of variation. The zones are not considered either temporally 436 
stable or variable across years but rather they are given a degree of variability over the years of study. This enables 437 
growers and operators to obtain more interpretable zones and offers the potential to use personal thresholds given 438 
their knowledge of the fields. In this study, the co-occurrence matrices have been computed by considering a 439 
temporal distance of one year (d = 1) for the temporal sequence of yield level in each zone. This means that the 440 
matrices are solely generated considering a specific year and the direct following or previous year available. In 441 
other words, the order of the years in the temporal sequence is taken into account. This might be questionable for 442 
annual crops such as wheat and canola. However, here, the use of the Sum Average and Sum of Squares indicators 443 
are very similar to mean and variance indicators which means that, in the end, the order of the years does not 444 
matter for these metrics. Nonetheless, this consideration of order might be much more appropriate for perennial 445 
crops, such as grape vines, for which consecutive years are much more related. For fields where fixed crop rotations 446 
are used, e.g. the alternate Wheat – Canola rotation in Field 2, and when long temporal sequences of yield mapping 447 
are available, it might be interesting to adjust the temporal distance accordingly. As such, by making use of a 448 
temporal distance of two years (d =2) for Field 2, the same analysis could be conducted on just the wheat or canola 449 
crop. This might be of particular importance in longer rotations where first and second wheat crops may want to 450 
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be considered separately. The Haralick-based temporal analysis proposed here is a first step towards reliable 451 
metrics to describe the spatial and temporal stability of zones, in this case yield zones. This approach could be 452 
enhanced further as only two Haralick indicators have been adapted here. Other Haralick indicators may be more 453 
suitable for other cropping systems, such as perennial crops, where there is a stronger inter-annual link between 454 
years. 455 

3.4 Practical considerations for the delineation of within-field yield zones 456 

Even though the proposed algorithm has been shown to be efficient in delineating yield zones, a couple 457 
of considerations still need to be discussed. First of all, it must be said that the concatenation of multiple years of 458 
yield data makes it difficult to have a clear understanding of the absolute yield level in each management zone. 459 
Indeed, there was a need to work with standardized yield values to lessen the influence of temporal variability in 460 
the delineation of within-field spatial units. Without this pre-processing, the yield multi-temporal analysis would 461 
not have been as meaningful. Absolute mean zone yields need to be back transformed or calculated when the yield 462 
zones are being assessed otherwise growers and advisors would be forced to make decisions using relative and not 463 
absolute information. Secondly, it is clear that the history and technical management of the field are crucial when 464 
considering which yield data to include in an analysis. Crops with a similar agronomic behaviour might be 465 
considered in the same analysis.  Saying that, it would be interesting to know whether there would be a possibility 466 
to consider some groups of cultivated crops for which yield data could be mixed. In this study, wheat and canola 467 
yield data were intentionally analyzed simultaneously for Field 2 given the high consistency in the yield spatial 468 
pattern for both crops. 469 

The analysis of historical yield data cannot be considered reliable unless it is based on a significant number of 470 
years encompassing a wide range of growing conditions and affecting external factors. However, it is relatively 471 
difficult to come up with a minimum threshold of years required due to the diversity in crop production systems 472 
in the same region, let alone world-wide. However, given the analysis that was conducted here, it appears risky to 473 
obtain reliable conclusions with less than four years of yield data. Knowing the spatial response of the yield to 474 
different external factors, particularly climatic variations, will help predict and refine the expected yield spatial 475 
pattern at the end of the upcoming growing season. For instance, in Field 1 it is likely that very wet growing 476 
conditions will reproduce the spatial yield pattern that occurred in 2012. Furthermore, the proposed methodology 477 
makes it possible to vary the weight associated to each yield map, although that has not been done here. This aspect 478 
is interesting if the intent is to simultaneously analyze multiple years of yield data while lowering the weight 479 
attributed to some of the years, i.e. because of very bad growing conditions or pest/disease effects for instance.  480 

The choice of the grid originating the change of spatial support for the yield data has been little discussed. In this 481 
work, a grid size consistent with that used in published studies has been chosen to simplify the processing chain. 482 
It must be clear however that changing the grid size will very likely generate unique within-field yield zones 483 
outcomes. For example, as the grid becomes coarser, small scale variations will be missed which will prevent 484 
small zones from being identified. This effect may be minimal however if the yield data exhibit quite a large spatial 485 
structure. One strong advantage of large grids is that they will be able to provide a simple, though less precise, 486 
zoned yield map which might help to make decisions. There is an agronomic advantage in interpretation and 487 
application to having a grid size that matches the width of field operations. The threshold Thresh that is proposed 488 
in the study to select the seeds from which the zones are grown is related to the size of the grid that is chosen. Even 489 
though this threshold has been selected to be relatively robust relative to the grid size, coarser grids might require 490 
the threshold to be decreased to make sure relevant information is not lost. Note also that this study solely 491 
considered one grid size for all the yield data. Nonetheless, all the yield data sets come with a different spatial 492 
resolution and the location of punctual observations do not match from year to year. The optimal grid size for 493 
different years might not be necessary similar. This raises questions regarding the choice of reliable grid sizes to 494 
aggregate yield data so as the way to combine those grid sizes if they are different from one year to another.  495 

3.5. Perspectives for the analysis of the within field yield zones. 496 

So far, the analysis has been solely aimed at differentiating zones with specific yield behaviour across 497 
years. This work did not intend to propose any particular management of these zones nor to provide growers with 498 
variable rate application maps. However, these delineated yield zones might be useful for a further differentiate 499 
management within the field. The concept of management zones is fuzzy because it definitely depends on the 500 
grower’s goal in sub-dividing the field (Kitchen et al., 2005). When using yield datasets to delimitate these zones, 501 
three dominant applications will be of interest for growers.  502 
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First of all, yield-based regions could help identify yield-limiting or at least yield-affecting factors. As 503 
the yield is the result of the combination of multiple factors that can vary over space, the division of a field into 504 
spatially homogeneous yield units would facilitate the characterization of these within-field external factors. Some 505 
of these drivers might or might not be manageable but the understanding of the underlying factors affecting the 506 
yield is decisive for the decision-making process.  507 

Secondly, these yield-based zones can help separate the fields into areas of different potential or 508 
productivity (Bochi et al., 2007; Robertson et al., 2008; Taylor et al., 2001). Such analyses are also referred to as 509 
yield-gap analyses because there is a difference, to a greater or lesser extent, between what the field actually 510 
produces and the productivity that it could achieve (Oliver and Robertson, 2013). A large yield gap means that 511 
there is probably considerable space for improvements in management practices and agronomical decisions. There 512 
should be more focus on high-potential areas because this is where yield outcomes can be greatly increased.  513 

Finally, the yield zones can help define economically interesting areas for the growers (Massey et al., 514 
2008). Zones that consistently deliver insufficient returns on investments are not worth it, especially if the zones 515 
do not a great potential or if the underlying yield-limiting factors cannot be corrected.  In addition to production 516 
potential, growers also need an indication of the  risk associated with achieving production potential for a zone 517 
(Marques da Silva, 2006).. The metrics proposed here will assist in economic modelling and determining whether 518 
specific yield (or management) zones are worth an investment or whether some management decisions are risky. 519 

 520 

4 Conclusion 521 

This works presents a methodology to extract and characterize within-field yield zones from a temporal series of 522 
yield data. The proposed approach generates contiguous and relatively large yield zones that encompass the general 523 
spatial patterns over the years. The efficacy of the zoning algorithm was assessed for spatial and temporal stability 524 
using image-based metrics of mean and variance.  The methodology was applied to two fields to good effect, with 525 
the derived zones and associated metrics raising questions regarding yield performance in space and time and 526 
spatio-temporal yield-limiting factors, particularly climatic factors. Rainfall patterns significantly influenced the 527 
spatial and temporal stability maps in the fields investigated. Yield zones could be further investigated by 528 
evaluating the risk of managing them. This risk analysis could be conducted for each zone through the 529 
characterization of multiple components such as the yield-affecting factors, the yield potential, or the return on 530 
investments among others. 531 
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