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Abstract 10 

Management zones can be defined as homogeneous regions for which specific management decisions 11 
are to be considered. The delineation of these management units is important because it enables or at least 12 
facilitate growers and practitioners performing site specific management. The delineation of management zones 13 
has essentially been performed by (i) clustering techniques or (ii) segmentation algorithms arising from the 14 
image processing domain. However, the first approach does not take into account the spatial relationships in the 15 
data, and is prone to generate a large number of fragmented zones while he second methodology has only been 16 
dedicated to regularly-spaced, within-field data. This work proposes a new approach to generate contiguous 17 
management zones from irregularly-spaced within-field observations, e.g. within-field yield, soil conductivity, 18 
soil samples, which are a very important source of data in precision agriculture studies. A seeded region growing 19 
and merging algorithm has been specifically designed for these irregularly-spaced observations. More 20 
specifically, a Voronoi tessellation was implemented to define spatial relationships between neighbouring 21 
observations. Seeds were automatically placed at specific locations across the fields and management zones were 22 
first expanded from these seeds. The merging procedure aimed at generating more manageable and interpretable 23 
zones. The merging algorithm was defined in a way that made it possible to incorporate machinery and technical 24 
management constraints. Experiments demonstrated that the proposed methodology was able to generate 25 
relatively compact and contiguous management zones. Furthermore, machinery and technical constraints were 26 
shown to significantly influence the results of the delineation which proved the importance of accounting for 27 
these considerations. 28 

Keywords: irregularly distributed spatial data, management zones, seeded region growing and merging 29 
algorithm, segmentation, variable-rate fertilization 30 

 31 

1. Introduction 32 

Site-specific management has become a subject of growing interest due to its ability to deal with the 33 
technical, economic and environmental issues of the agricultural domain (Oliver, 2010). A popular tool to 34 
implement site-specific management is through the delineation of management zones. These management zones 35 
can significantly help growers and agronomy specialists to  perform site-specific management across the fields in 36 
question. Their delineation will also greatly facilitate all kinds of machinery intervention within these fields. 37 

 There must be no confusion between the concept of management zones and the concept of management 38 
classes (McBratney et al., 2005), however. Management zones are spatially contiguous entities, i.e. closed sets 39 
from a topological point of view, over which a specific application can be performed. On the contrary, a 40 
management class is an open set which combines all the management zones over which the same treatment will 41 
be applied. It must be noted that in the literature, many authors actually delineate management classes rather than 42 
management zones. Indeed, most authors mainly use classification-based methods such as the well-known k-43 
means algorithm and its fuzzy variant, the fuzzy c-means algorithm (Li et al. 2007; Moral et al. 2010, Peralta et 44 
al. 2015). These approaches are generally well-accepted because they systematically find patterns in the data, 45 
whether these patterns are actually interesting or not. The authors assume that the variable of interest is spatially 46 
organised and that the resulting classes will consequently be organised in zones. However, depending on the 47 
level of noise and autocorrelation of the variable under consideration, the resulting management zones may 48 
suffer from being highly fragmented within the field. Indeed, no spatial information is taken into account and the 49 
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variable of interest is simply considered as aspatial information. Multiple improvements have been proposed to 50 
overcome this problem. For instance, spatial coordinates have been included in the classification-based (Oliver 51 
and Webster, 1989). Although the approach is interesting and enhances the contiguity of the management zones, 52 
there is a need to carefully consider the weighing of the spatial coordinates compared to the values of the 53 
agronomic variable under study. It must be noted that some management zones are still fragmented to a lesser or 54 
greater extent. Other approaches intended to apply spatial filters, either before or after classifying the observation 55 
methods (Ping et al., 2003). These techniques help decrease the zones fragmentation but result in the loss of 56 
meaningful information. Indeed, spatial filters smooth the information and might mask the existing heterogeneity 57 
within the fields, especially if large filters are used.  58 

More recently, segmentation methods arising from the signal processing domain have been used to 59 
delineate management zones (Pedroso et al., 2010; Roudier et al., 2008; Zane et al., 2013). One significant 60 
advantage of segmentation approaches is that the purpose of these methods is the detection of contiguous objects 61 
(Pal and Pal, 1993). Segmentation approaches are very effective when it comes to extracting an object from a 62 
significantly different background. For example, segmentation methods are widely used in the medical domain 63 
to identify tumours or to delineate organs (Pham et al., 2000). However, in agriculture, management zones are 64 
not well-defined objects that can be clearly distinguished from other surrounding objects because the variations 65 
in agronomic information between two management zones are not crisp but graduated. There is no prototype of 66 
what the segmentation should look for, e.g. in terms of shape or colour. Segmentation approaches were usually 67 
implemented so to process regularly gridded data, yet agronomic data can be either recorded on a regular or 68 
irregular grid (Taylor et al., 2007). From a general perspective, irregularly-spaced observations can be relocated 69 
on a regular grid by interpolation. However, interpolation is likely to affect the distribution of the dataset, can be 70 
computationally intensive, and might require skilled operators to perform the process. To avoid this drawback, 71 
Pedroso et al. (2010) introduced an approach that is able to process irregularly-spaced datasets (Pedroso et al., 72 
2010). 73 

 74 

 75 

 76 

 77 

 78 

 79 

 80 

 81 

 82 

 83 

Figure 1.  Management classes and management zones. Four spatially contiguous management zones and three 84 
management classes are present within this field. One management class corresponds to one specific 85 
application. 86 

To be fully operational, a variable-rate application map must take into account the machine that will be 87 
used to perform the site-specific treatment (Tisseyre and McBratney, 2008),  so to avoid generating management 88 
zones whose shape cannot be handled by the machinery. A variable rate application map should take into 89 
account the following main aspects: (i) the rate changing response time, i.e. the time required to change the 90 
applicate rate from a current value to a desired value (Fulton et al., 2001; Fulton et al., 2005), (ii) the accuracy of 91 
the application rates, i.e. the ability of the machine to apply a specific rate (Roudier et al. 2011) and (iii) the 92 
spatial footprint of the machine, i.e. the minimum area the machinery can deal with (Tisseyre and McBratney, 93 
2008). Recently, some authors have proposed the delineation of rectangular management zones to fulfil the 94 
operational requirements of variable rate applications (Cid-Garcia et al., 2013). Their approach intends to find 95 
the optimal zoning of the field by minimizing the variance between rectangular management zones of different 96 
sizes. This method was proven very effective on a sparse spatial dataset consisting of soil samples. However, the 97 



3 
 

optimality might be much more difficult to reach on highly-dense spatial datasets. Improvements based on semi-98 
variogram analyses have been proposed to address the problems of (i) an insufficient number of sample sites and 99 
(ii) the optimal size of rectangular management zones (Zhang et al. 2016). However, this new approach still 100 
requires manual supervision for the estimation of variogram parameters and requires an interpolation of the 101 
variable to be segmented. 102 

The major contribution of this work is to propose a method to generate management zones for 103 
irregularly spaced data while accounting for the technical constraints surrounding the agronomic operation to be 104 
performed. First, the proposed segmentation algorithm is presented from a theoretical standpoint. Then, an 105 
implementation of the overall approach is proposed. Next, the methodology is tested on real within-field soil 106 
phosphorus requirements with the objective of performing a variable rate fertilization. The robustness and 107 
sensitivity of the methodology are carefully evaluated. 108 

 109 

2.  A seeded region growing and merging approach 110 

 In the segmentation literature, the region growing and merging approach is one of the most common 111 
methods to detect contiguous objects (Pal and Pal, 1993). From a practical standpoint, the growing procedure 112 
aims at initializing the detection of objects by expanding small regions into larger ones. This step often leads to 113 
the identification of still relatively small zones that need to be merged to define the objects of interest more 114 
clearly. The region growing algorithm is generally driven by a set of initial regions, the seeds, from which the 115 
regions are expanded (Adams and Bischof, 1994; Mehnert and Jackway, 1997). The growing step is a very good 116 
way to account for the trade-off between over and under segmentation. Over-segmentation would occur if each 117 
observation available in the dataset was being considered as an initial zone or if the methodology was identifying 118 
a very large number of zones. In that case, the computational time of the merging algorithm would be 119 
dramatically increased because the number of fusions to be evaluated would be very large. It should be 120 
understood that the growing procedure is not compulsory. Management zones might be created by solely relying 121 
on a merging algorithm (Pedroso et al., 2010). On the other hand, the number of seeds must not be too low so as 122 
to avoid an under-segmentation effect. This latter effect would lead to a loss of information because relevant 123 
structures would be missed within the dataset. The proposed methodology involves the use of a seeded region 124 
growing and merging algorithm to perform the management zone delineation. 125 

2.1 The Seeded Region Growing Procedure 126 
2.1.1 Concept of seeds in region growing algorithm 127 

From a more theoretical point of view, assume a dataset made of n observations. Let S be the set of k 128 
seeds S1, S2, …, Sk to initiate the region growing algorithm. Note that the seeds are considered as very small 129 
regions that will be expanded. The zones arising from the growing procedure are very sensitive to the choice of 130 
these seeds. To choose reliable seeds, three main rules must be followed. First, a seed must be very consistent to 131 
the observations inside its neighbourhood to ensure that the regions will be able to grow. Second, if a specific 132 
zone has to be delineated within the field, there must be at least one seed inside this zone. Last but not least, 133 
seeds for different regions must be disconnected. The selection of seeds is specified in section 3.1.2. Let T be the 134 
set of n-k observations inside the dataset that are not a seed T1, T2, …, Tn-k. The objective of the growing 135 
procedure is to recursively associate each observation inside T to an existing region, i.e. one of the k initial 136 
regions. To assimilate these observations, there is a need to define neighbouring relationships between 137 
observations. In the image processing domain, neighbouring observations are defined as those that share at least 138 
a vertex. As images are made of regularly-spaced pixels, these relationships are easy to set up. However, as it 139 
was previously stated, agronomic datasets generally gather irregularly-spaced observations. This requires an 140 
additional step to define the neighbouring relationship (Pedroso et al., 2010) which will be specified in section 141 
3.1.1. 142 

2.1.2 Definition of a neighbourhood for each observation 143 

To be able to define neighbourhood relationships, each irregularly-spaced observation was converted 144 
into a small region via a Voronoi tesselation (Fig. 2). The objective was to create small contiguous zones on 145 
which the region growing and merging algorithm could be applied. The first-order neighbours and second-order 146 
neighbours of xi will be referred to as N1(xi) and N2(xi) respectively (Fig. 2). The neighbourhood of each 147 
observation xi was set to involve all the first and second-order neighbours and will be referred to as 𝑁1∪2(𝑥𝑖). It 148 
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must be understood that 𝑁1∪2(𝑥𝑖) is composed of N1(xi) and N2(xi). This type of neighbourhood was selected to 149 
make sure that each observation had a minimum number of neighbours, especially for the observations near the 150 
field boundaries. 151 

 152 

 153 

 154 

 155 

 156 

 157 

 158 

 159 

 160 

Figure 2.  Voronoi tessellation and neighbourhood relationships. Each square, triangle and circle are the 161 
centroids of the corresponding Voronoi polygons. According to the red star on the top of the plot, Voronoi 162 
polygons with a blue triangle are first-order neighbours N1, and those with a green square are second-order 163 
neighbours N2 (first-order neighbours of the first-order neighbours). 164 

2.1.3 Creation of a variance map 165 

The objective of the zoning approach is to optimize the delimitation of management units within a given 166 
field, which requires, according to the proposed methodology, to place at least one seed inside each of these 167 
regions. To reach that objective, seeds were selected by using a variance map instead of the raw dataset for two 168 
major reasons. Firstly, it was considered that the variance within a region should be relatively homogeneous, the 169 
attribute values being consistent among others within that region. Secondly, the variance near the boundaries of 170 
two regions should significantly increase. By placing a seed into a homogeneous region, i.e. low variance, and 171 
letting the region grow until the boundaries of that region are reached, i.e. a strong increase in the variance, this 172 
region should be well delineated. This approach is relatively consistent to that of the watershed algorithm 173 
(Roudier et al., 2008) but it is here applied to irregularly-spaced observations.  174 

Hence, for each observation xi, a variance metric Vi was computed relatively to its first and second-order 175 
neighbourhood 𝑁1∪2(𝑥𝑖) defined previously. To be more robust to possible outliers inside 𝑁1∪2(𝑥𝑖), the variance 176 
metric was calculated as the median absolute deviation (Eq. 1).  177 

 𝑉𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑓𝐴(𝑁1∪2(𝑥𝑖) ) − 𝑔𝐴(𝑥𝑖)) Eq. 1 

Where 𝑓𝐴 is an attribute function so that 𝑓𝐴(𝑁1∪2(𝑥𝑖)) is the set containing the values of the attribute A of all the 178 
observations belonging to 𝑁1∪2(𝑥𝑖) and 𝑔𝐴 is an attribute function so that 𝑔𝐴(𝑥𝑖) is the median of the attribute A 179 
of the observations belonging to 𝑁1∪2(𝑥𝑖). 180 

2.1.4 Seed Selection Process 181 

           Seeds were considered to be the observations with the lowest variance with their local neighbourhood 182 
because the purpose was to spot the most homogeneous initial regions within the fields. However, by following 183 
this statement only, there would be a strong probability of selecting spatially-close seeds if a large region 184 
containing multiple observations was very homogeneous. Indeed, inside a homogeneous region, neighbouring 185 
observations are consistent between each other and there would be as many seeds as observations inside this 186 
region. This is not desirable because the region growing algorithm would expand all the neighbouring seeds and 187 
create very small management zones, i.e. with only a few points. Once a seed is placed inside a homogeneous 188 
region, the region should be able to grow until a strong step in variance is observed which would correspond to 189 
the boundaries of this region (Fig. 3). This step in variance needs to be carefully determined because it will be 190 
the threshold allowing or not the regions to expand. This threshold must not be set too low because data might be 191 
subjected to noise. This noise is likely to increase the variance locally and prevent the regions from growing if 192 
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the threshold is not high enough. On the contrary, this step in variance must not be too high because two 193 
different regions should not be merged together. To define this step in variance, the amount of noise 𝜃𝑖 around 194 
each observation was first calculated as in Eq. 2:  195 

 𝜃𝑖 = 𝑠𝑑 (𝑉𝑁1∪2(𝑥𝑖) ) 

 

Eq. 2 

Where 𝑠𝑑 stands for the standard deviation, 𝑉𝑁1∪2(𝑥𝑖) is the set containing all the variances V of the 196 

observations belonging to 𝑁1∪2(𝑥𝑖) 197 

𝜃𝑖 can be understood as a criterion of variance homogeneity. The step in variance, Thresh, is then defined as the 198 
mean of the 𝜃𝑖 distribution. The seed selection process consists in the following steps: 199 

a. Define G1 as the group containing all the seeds and G2 as the group containing all the non-200 
seeds. At first, all observations belong to G1 201 

b. Calculate the step in variance, Thresh. 202 
c. Order the observations from the lowest to highest Vi 203 
d. Select the first seed, S1 as the observation with the lowest Vi 204 
e. For each observation xi inside N1(S1), if the step in variance is lower than Thresh between 𝑉𝑆1 205 

and 𝑉𝑥𝑖
, then xi is put in G2 because it is considered that xi is consistent with S1 206 

f. Repeat step e. for each observation xj inside N1(xi) and so on until there are no neighbours for 207 
which the step in variance is lower than Thresh. Be aware that here, the step in variance takes 208 
into account the spatial proximity as it is evaluated between 𝑉𝑥𝑖

 and 𝑉𝑥𝑗
. 209 

g. Repeat step d. to f. with the next seed (that with the lowest Vi inside the new set G1 resulting 210 
from the previous iteration) until no future seed can be selected. 211 

In the end, the group G1 only gathers the final seeds within the field.  212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

Figure 3.  Calculation of a criterion of variance homogeneity for each observation. 223 

2.1.5 Growing the Initial Regions 224 

The set of k seeds S1, S2, …, Sk are considered as the initial regions within the field. At each iteration of 225 
the region growing algorithm, all the first-order neighbours of a given region are considered. Let N(xi) be the set 226 
of observations belonging to the neighbourhood of observation xi and let fA be an attribute function so that fA(xi) 227 
is the value of the attribute A of xi. Let g be a function so that g(x1, x2.., xn) returns the median of the observations 228 
x1, x2.., xn. For a specific observation xi, if N(xi) intersects a zone Zj, then a similarity measure 𝛿(xi,Zj) is computed 229 
between xi and Zj (Mehnert and Jackway, 1997). This metric is calculated as follows: 230 

 𝛿(𝑥𝑖 , 𝑍𝑗) = | 𝑓𝐴(𝑥𝑖) − 𝑔𝑥𝑗∈𝑍𝑗
(𝑓𝐴(𝑥𝑗)) | Eq. 3 

 231 
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In the case that N(xi) intersects more than one zone, 𝑥𝑖 is associated to the region with which the similarity 232 
measure 𝛿(𝑥𝑖 , 𝑍𝑗) is the smallest. At each iteration of the growing procedure, the observation 𝑥𝑖 with the smallest 233 

𝛿(𝑥𝑖 , 𝑍𝑗) is merged with the zone Zj. Note that the regions are grown one at a time, i.e. at each iteration, and not 234 
all together. This is effectively the smallest difference, concerning all the possible seeded regions, that is 235 
accounted for. As a consequence, 𝑍𝑗 is grown and the resulting attribute value inside 𝑍𝑗 is calculated as the 236 
median attribute value over all the observations belonging to 𝑍𝑗 . The algorithm stops when all the observations 237 

inside T have been merged with an existing zone. Note that, at the end of the procedure, there will be as many 238 
zones as the number of initial seeds. 239 

 240 

2.2 The Region Merging Algorithm 241 
2.2.1 Merging the Resulting Regions from the Growing Algorithm 242 

 The merging procedure aims at merging the resulting k regions into a set of p (p < k) regions. The 243 
objective being to reduce as much as possible the over-segmentation phenomenon so that the final objects are 244 
well-identified. The merging procedure is controlled by a technical opportunity index that measures how 245 
spatially manageable the variable rate application map is (See next section). As the final objective of the 246 
management zone delineation is to obtain the highest technical opportunity index possible, the approach aimed at 247 
merging iteratively the two neighbouring zones that would lead to the maximum technical opportunity index 248 
value. Be aware that the technical opportunity index is calculated over the whole field. This technical 249 
opportunity index also helps to choose the optimal number of management zones to be considered within the 250 
field.  251 

2.2.2 Evaluating the technical opportunity of the zoning 252 

Management zones have to be thought about from an operational point of view, i.e. whether these zones 253 
can be treated as they should be by the machine that will perform the application. Opportunity indices have been 254 
proposed in the literature to evaluate how fields are spatially structured (Pringle et al., 2003; Oliveira et al., 255 
2007). More recently, new opportunity indices have intended to account for the machinery characteristics to 256 
provide a better vision of the operational possibilities for the application (Tisseyre et al., 2008; Roudier et al., 257 
2011). More specifically, Roudier et al. (2011) have proposed a zoning index, ZOI, which evaluates the risks of 258 
making an error when performing a variable rate application over a uniform application given a proposed zoning 259 
(Eq. 4) 260 

 𝑍𝑂𝐼 = 1 −  
𝑉𝑅𝑚

𝑈𝑚

 Eq. 4 

 261 

Where 𝑈𝑚 and 𝑉𝑅𝑚 refers to uniform and variable rate management respectively. The closer the ZOI to 1, the 262 
better the technical opportunity of the application. 263 

The term 𝑈𝑚 is calculated as the sum of squared differences between what should be applied over each 264 
observation and the average value of the observations within the field. The term VRm is also a sum of squared 265 
differences but, instead of considering the average value over the field, it uses the average value of each 266 
management zones to which an observation belongs. Moreover, the term VRm is specific to the application under 267 
consideration. Roudier et al. (2011) have defined two different risks for a variable rate application, (i) that 268 
related to the spatial footprint of the machinery, Risk1 and (ii) that related to the ability for the machine to respect 269 
the given prescription, Risk2. These authors have proposed to account for the machinery’s spatial footprint by 270 
dilating the boundaries of the delineated zones. Here, it is proposed to consider Risk1 by making use of a grid of 271 
machine’s spatial footprint, so that it is possible to account for the size of the spatial footprint and for the 272 
working direction of the machine (Fig. 4). Inside each spatial footprint of the machine, only one treatment level 273 
can be applied. If the spatial footprint embraces only one management zone, it is considered that the machine 274 
will apply the treatment level associated to that one zone. If a machine footprint straddles multiple management 275 
zones, e.g. near the boundaries of these zones, it is considered that the machine will apply the treatment level of 276 
the predominant zone. The application error, Risk1 is calculated as the difference between what is applied and 277 
what should have been applied. The spatial footprint can be calculated as explained in Tisseyre and McBratney. 278 
(2008): 279 
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 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 = (𝛽 + 𝛿)×(𝑣𝑡 + 𝛿) Eq. 5 

 280 

Where 𝛽 is the width of the machine, 𝑣 is the speed of the machine, 𝑡 is the time for the machine to alter the 281 
application rate and 𝛿 is the positioning inaccuracy. 282 

Risk2 will be evaluated in the same way as in Roudier et al. (2011) by considering the difference 283 
between what should be applied within a given region and what the machine is actually able to apply. 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

Figure 4.  Use of a grid of spatial footprints on the management zones. 297 

To prove the usefulness of the ZOI in delineating management zones, the proposed approach was 298 
compared to the methodology of Pedroso et al. (2010). These authors have come up with a zoning method that 299 
can be applied to irregularly-spaced datasets. In their approach, each observation is considered as an initial seed, 300 
i.e as an initial region. In other words, the authors did not intend to select any particular seeds within the fields. 301 
They solely relied on a region merging procedure. In their approach, the best fusion between two neighbouring 302 
regions is selected as the one that minimizes the change in the range of the attribute values between the two 303 
initial neighbouring regions and the region resulting from the merging of these two regions. In their approach, 304 
the technical opportunity of a variable rate application is not taken into account. The objective of this 305 
comparison was to evaluate the advantages of considering an opportunity index for the delineation of 306 
management zones. 307 

2.2.3 Finding the Optimal Number of Management Zones 308 

The behaviour of the ZOI indicator as management zones are merged can be divided into three major 309 
sections (Fig. 5). The right side of the plot relates to the constraints of the machinery. It corresponds to the 310 
merging of strongly constrained zones, e.g. small or very narrow zones. The ZOI is then expected to reach a 311 
maximum value, i.e. the optimal technical opportunity for the given application, because it is considered that all 312 
the remaining zones can be managed by the machine. The simplest stopping criterion would be to select the 313 
number of management zones for which the ZOI is at a maximum value, High_MZ, so that to ensure an optimum 314 
variable rate application. From a machinery perspective, this reasoning seems relevant. However, the resulting 315 
map might be relatively difficult to read and interpret for a farmer or an advisor because many management 316 
zones are likely to remain depending on the size of the machine footprint. As a consequence, there is a need to 317 
propose two levels of detail. One for the machine, that has been defined previously, and another more 318 
appropriate for analysis and interpretation purposes. 319 

 Fusions should be continued to overcome this issue. After reaching the maximum ZOI value, as other 320 
management zones are merged, the ZOI indicator should exhibit relatively small fluctuations and then start 321 
decreasing abruptly. This strong decline is due to the merging of management zones with strong differences in 322 
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their attribute values and can be indicative of a future loss of performance. Indeed, these fusions would lead to 323 
very non-homogeneous zones and the variable rate application over these zones would be inappropriate. This 324 
second threshold, Low_MZ, is here defined as the point at which the change in slope is the strongest after the 325 
maximum ZOI value has been reached. Low_MZ can be identified by calculating angles between consecutive 326 
ZOI values and then, selecting the point for which the change in angle value is maximal. Low_MZ is associated 327 
with a number of management zones necessarily lower than High_MZ. Between these two thresholds, the ZOI 328 
remains stable which indicates that any number of management zones could be considered in the final 329 
management map. However, according to the grower’s management strategies, some fusions might be much 330 
more appropriate than others. Those strategies, here referred to as management constraints, should also be used 331 
to drive the merging process of the algorithm. For instance, a farmer might want to prevent the merging of two 332 
management zones whose difference in attribute value is superior to a particular threshold because this latter is 333 
meaningful to him. It must be understood that there is a clear difference between the machinery constraints and 334 
the management constraints. The former refers to spatial and technical constraints specific to the characteristics 335 
of the machinery while the latter is related to the grower’s sensitivity and management strategies. Those 336 
constraints will be illustrated in the next section. 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 

 347 

 348 

 349 

Figure 5.  Evolution of the ZOI index with a decreasing number of management zones 350 

It has been stated that the final number of management zones should be set between the two thresholds 351 
previously defined as High_MZ and Low_MZ, i.e. after the machinery constraints and before the loss of 352 
performance (Fig. 5). After the maximum ZOI value has been reached, High_MZ, fusions are performed until 353 
either (i) the minimum number of management zones, Low_MZ, has been reached or (ii) there is no more 354 
merging that fulfils the management constraints. Be aware that if no management constraints are defined, the 355 
merging process solely relies on the ZOI indicator. It should be noted that, if the number of management zones is 356 
known in advance or corresponds to a specific request from the farmer, the merging algorithm might be stopped 357 
when this number of management zones has been reached. 358 

 359 

3. Material and Methods 360 
3.1 Case Study: A Variable Rate of Fertilization 361 

The methodology was tested on two within-field soil phosphorus requirement datasets (Tab. 1). The objective 362 
being to create operational and relevant phosphorus management zones. The first dataset arises from a field 363 
located close to Peterborough, in England. The second field is located near Evreux, in the north-western part of 364 
France. Both fields are cropped with a wheat and canola rotation. These datasets were obtained by using a 365 
methodology developed by fertilizer experts combining within-field yield datasets collected with an embedded 366 
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yield monitor, fertility analyses, soil descriptions and crop history data amongst other criteria (Comifer, 2007 – 367 
French denomination). 368 
 369 
Table 1. Descriptive statistics and geostatistical parameters of the two fields under consideration. 370 

Field Min 
1st 

quartile 

Mean 

 

3rd 

quartile 
Max 

CV 

(%) 

Nugget 

to 

sill ratio 

(%) 

Range 

(m) 

Number of 

points 

Size 

(ha) 

1 18.8 158.8 191.8 232.4 306.8 27.6 3.7 120 6415 10.2 

2 88.7 239.9 256.0 283.4 334.7 15.4 4.5 74 1480 5.6 

 371 

Table 2 reports all the standard parameters used for the case study under consideration. For the application under 372 
study, common fertilizer spreaders work with a fertilization width between 28 and 36 meters. Considering an 373 
average working speed of 10 km/h and an average lag time of 3-4 sec, the length of the spatial footprint was 374 
estimated around 10 to 15m (Fulton et al., 2005; Molin et al., 2002). Considering a positioning inaccuracy, 𝛿, of 375 
1m, the width and length of the spatial footprint, 𝛽 + 𝛿 and 𝑣𝑡 +  𝛿, were set respectively to 30 and 12 m. Given 376 
the machinery available, it was considered that the application rates of the machine could be controlled every ten 377 
phosphorus units (approximately 20 kg/ha given commonly used fertilizers such as Phosphore 45). The working 378 
direction of the fertilizer spreader was considered similar to that of the major orientation of the within-field yield 379 
observations, i.e. the working direction of the combine harvester (Fig. 6).  380 

Table 2. Input parameters in the sensitivity analysis for the creation of fertilizer management zones. Values in 381 
bold are the standard parameters used for the zoning delineation 382 
 383 

Type Criterion Definition Associated values 

Data quality 
Small scale 

variations 

Gaussian noise added to each 

observation (mean value of 0 and 

an amplitude of +/- X% with 

regard to the attribute value of 

each observation) 

X = 0, 10%, 20%, 30%, 40% 

Machinery 

 constraints 

Discretization of 

the machine 

Graduation of application rates 

that the machine can consider 
10, 20,40, 60 and 80 kg/ha 

Size of the spatial 

footprint 
Size of the spatial footprint  15, 90, 360 and 1440 m2  

Grid orientation 
Orientation relative to the major 

orientation of the data 
0, 45°, 90°, 135° 

Grid 

transposition 

Transposition of the grid relatively 

to the initially defined grid 
0, 10, 15 m 

Management 

 constraints 

Attribute 

difference and 

homogeneity 

Constraints that will prevent 

neighbouring zones from being 

merged 

• No constraints,  

• M1: Mean attribute difference < 40 kg/ha 

• M1: Mean attribute difference < 60 kg/ha 

AND M2: Variance difference < 20% 

 

 384 

3.1 Sensitivity Analysis of the Proposed Methodology 385 

The proposed zoning algorithm was further evaluated by performing a sensitivity analysis on datasets with 386 
specific properties regarding: (i) the initial amount of noise in the dataset, (ii) the discretization rates which the 387 
machinery is able to achieve, (iii) the size of the machinery spatial footprint, (iv) the orientation of the  388 
machinery spatial footprint grid and (v) the transposition of the machinery spatial footprint grid and (vi) the type 389 
of management constraints for the operation under consideration (Table. 2). These criteria were tested one at a 390 
time while the others were given a standard value. The influence of the parameters was studied according to the 391 
resulting zone delineation and to the evolution of the ZOI indicator during the region merging process. In 392 
addition to the definition provided in Tab. 2, the following examples should make these criteria more 393 
understandable for users: 394 

 395 
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• Machinery Constraints 396 
o Discretization of the machine: A step of 40 kg/ha means that the machinery can only apply 397 

treatment rates every 40 kg/ha, i.e. 0, 40, 80, 120… kg/ha 398 
o The size of the spatial footprint is illustrated in Fig. 4. 399 
o Grid orientation and transposition are illustrated in Fig. 6  400 

• Management Constraints:  401 
o A mean attribute difference (M1) inferior to 40kg/ha means that neighbouring zones for which the 402 

difference in attribute value is superior to 40kg/ha cannot be merged. This management constraint, 403 
which should be defined by an expert, prevents management zones with different attribute values 404 
from being merged. 405 

o A variance difference (M2) inferior to 20% means that neighbouring zones for which the variance 406 
difference is superior to 20% cannot be merged. This management constraint, which should be 407 
defined by an expert, prevents homogeneous zones from being merged with heterogeneous zones. 408 

 409 
 410 
 411 
 412 
 413 
 414 
 415 
 416 
 417 
 418 
 419 
 420 
 421 
 422 
 423 
 424 
 425 
 426 
 427 
 428 
Figure 6.  Rotation and Transposition of the Grid of Spatial Footprints. 429 

The whole methodology was implemented using the R statistical environment (R Core Team, 2017). 430 

 431 

4 Results and Discussion 432 
 433 
4.1 Evaluation of the Seeded Region Growing and Merging Algorithm 434 
4.1.1 The Delimitation of Management Zones 435 
 436 
Figure 7 a-c illustrates the process of the management zones delimitation from the raw dataset to the zoning 437 
resulting from the region merging algorithm. The region growing and merging algorithm has been performed 438 
with a standard parameter setting and no management constraints were applied. The merging procedure solely 439 
relied on the ZOI indicator. Figure 7.d shows the zoning obtained following the method of Pedroso et al. (2010) 440 
with the same number of management zones as in the proposed approach. In both fields, the resulting delineation 441 
appears to be consistent with the one which would result from intuitive delineation (Fig. 7). Both fields exhibit 442 
quite a clear spatial structure with a large magnitude of variation and distance of spatial autocorrelation (Tab. 1). 443 
Visual inspection of the results shows that the proposed methodology generates more compact zones than that of 444 
Pedroso et al. (2010). The latter approach is effectively more sensitive to noise which makes the zones account 445 
for every discontinuity within the datasets. For instance, in Field 2, the low-fertilizer requirement zone in the 446 
south-east is not identified by the algorithm of Pedroso et al. (2010) to the expense of a much smaller region in 447 
the northern-western part of the field. This sensitivity to noise is due to the fact that their approach exclusively 448 
relies on a region merging algorithm in which each spatial observation is considered as an initial zone. These 449 
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very small regions cannot account for the spatial structures within the datasets. Here, this sensitivity to noise is 450 
not extremely impacting but could be much more problematic in noisy datasets. 451 
 452 

The proposed methodology generates relatively large zones in respect to the field size which means that 453 
the seeds could capture non-redundant information (Tab. 3). The region growing algorithm alone is not able to 454 
assess whether phosphorus differences between neighbouring zones are significant or not. It is efficient for this 455 
purpose in that it merges neighbouring zones that are relatively similar in terms of soil phosphorus requirements 456 
while still accounting for the machinery application. Note how large the management zones become after the 457 
fusion process (Tab. 3). It can also be seen that the merging step generates fewer zones for Field 2 because the 458 
variance of the fertilizer requirements inside this field is much lower than that in Field 1 (Tab. 1). 459 
 460 
 461 
 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 
 484 
 485 
 486 
 487 
Figure 7. Zoning Soil Phosphorus Requirements for Field 1 (top) and Field 2 (bottom). a. Raw phosphorus 488 
requirements dataset and Phosphorus management zones after the growing procedure (b),  after the merging 489 
procedure (c) and with the method of Pedroso et al. (2010) (d). No management constraints were considered in 490 
that case. 491 
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Table 3. Management Zones Resulting from the Proposed Seeded Region Growing and Merging Algorithm. 492 
 493 

Algorithm 

Field 1 Field 2 

After region 

growing 

After region 

merging 

After region 

growing 

After region 

merging 

Number of 

zones 
57 7 20 3 

Average area 

per zone (ha) 
0.18 1.46 0.28 1.86 

Average 

number of 

points per 

zone 

112 914 74 493 

 494 
The region growing and merging algorithm generates management zones with different soil phosphorus 495 
requirements, i.e. soil phosphorus requirements in neighbouring management zones barely overlap (Fig. 8). The 496 
seven management zones of Field 1 could be associated with four management classes based on pragmatic 497 
grower decisions on fertilizer applications. Field 2 could be categorized as three management classes. The 498 
variable application maps appear to be very operational because the characteristics of the application and the 499 
machine have been accounted for. All the zones that have been delineated are effectively manageable by the 500 
machine. 501 

 502 
 503 
 504 
 505 
 506 

 507 

 508 

 509 

 510 

 511 

 512 

Figure 8. Management Zone Delineation and Corresponding Soil Phosphorus Requirements.  513 

 514 
4.1.2 Usefulness of the Zoning Opportunity Index in the Delineation Process 515 
 516 

The ZOI value is an indicator of how spatially manageable the field is and therefore also relates to the 517 
amount of errors that will be reached after performing a given application. In other words, the lower the ZOI, the 518 
higher the number of treatment errors. Field 1 exhibits higher ZOI values than Field 2 which means that Field 1 519 
is more prone to variable rate application (Tab. 4). This could be expected because the gradient observed in Field 520 
1 seems much clearer and because the variance of Field 1 is much higher than that of Field 2, i.e. almost twice as 521 
big (Tab. 1). For both fields, the region merging algorithm has been stopped twice, i.e. when the maximum ZOI 522 
value had been reached [High_MZ] and when the strongest change in slope in ZOI values has been spotted, 523 
Low_MZ (Fig. 5). It can be seen that, for interpretation purposes, the number of management zones is 524 
significantly reduced leading to a decrease in the operation opportunity. Note that the ZOI still remains relatively 525 
high.  526 
 527 
 528 
 529 
 530 
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Table 4. Comparison of the proposed method and that of Pedroso et al., (2010).  531 
 532 

 Dataset 1 Dataset 2 

Algorithm 

Proposed approach 

Pedroso et 

al. (2010) 

Proposed approach 

Pedroso et 

al. (2010) 
After 

region 

growing 

After region merging 
After region 

growing 

After region merging 

High_MZ Low_MZ High_MZ Low_MZ 

Number of 

management 

zones 

57 28 7 7 20 13 3 3 

ZOI 0.74 0.76 0.67 0.60 0.47 0.48 0.35 0.32 

 533 
Table 5 also compares the output of the proposed approach and that of Pedroso et al. (2010). The number of 534 

management zones has been set similarly for comparison purposes. Optimizing the fusions in terms of 535 
opportunity resulted in a higher ZOI value for the proposed approach than for that of Pedroso et al. (2010). The 536 
difference in ZOI values between the two methods is not that large, between 0.03 and 0.07. Remember that the 537 
ZOI value cannot be superior to 1. This difference represents a gap of 3-7% regarding the errors in application 538 
for the same field and the same number of management zones. The methodology to automatically choose the 539 
optimal number of management zones for the grower proved relatively efficient because the change in slope in 540 
ZOI values is clear enough (data not shown). This approach provides an objective way to identify the optimal 541 
number of zones. By looking at the ZOI curve, one could have chosen a slightly different number of 542 
management zones. Several evolutions could be taken into consideration to improve the identification of the 543 
optimal number of management zones. In the next section, incorporation of management constraints in the 544 
merging process is considered. 545 
 546 
4.2 Sensitivity analysis of the proposed approach 547 
4.2.1 Influence of noisy datasets and machinery constraints on the delineation of management zones 548 
 549 

Figure 9 reports the influence of noisy datasets and machinery characteristics on the ZOI indicator 550 
regarding Field 2. All the x and y-axes have been set with the same scale to facilitate the comparison between the 551 
different criteria under consideration. As expected, the spatial footprint of the machinery has a strong influence 552 
on the ZOI values. Indeed, the calculation of the ZOI indicator is based on the  spatial footprint grid. Any change 553 
in the mesh of the grid will significantly influence the resulting ZOI value. As the spatial footprint decreases, the 554 
opportunity increases because the machine is able to manage smaller zones. According to the other machinery 555 
characteristics, changes in the discretization of the treatment levels also generates strong ZOI variations but there 556 
seems to be a threshold until which the machine is still considered accurate and ZOI values are consistent, e.g. 557 
40 kg/ha in this case. The results are specific to the field under study. Contrary to the previous parameters, the 558 
transposition of the grid does not critically affect ZOI values. It can be seen that the technical opportunity is 559 
slightly higher with the standard position of the grid. On the contrary, the grid orientation has more impact, 560 
which was also highlighted by Roudier et al. (2011). If the fertilization was to be performed in a direction 561 
perpendicular to the major orientation of the observations, the opportunity of the application would be higher. 562 
This is interesting because the ZOI might help find the direction of strongest variations within the field. Noisy 563 
datasets negatively impact the ZOI indicator. Beyond 20%, the Gaussian noise applied to each observation 564 
produces a strong decrease in the ZOI values for two principal reasons: firstly, resulting management zones are 565 
heterogeneous which lowers the corresponding ZOI value and secondly, some zones are likely to be missed by 566 
the region growing and merging approach. It can also be seen that as the amount of noise increases, the initial 567 
number of management zones after the region growing process increases too.  568 
 569 
All the ZOI curves follow the theoretical behaviour of the ZOI index that has been previously introduced (Fig. 5) 570 
relatively well. However, it must be noted that these curves are not always monotonic. For instance, with the 571 
15𝑚 setting for the grid transposition parameter, the ZOI is higher for two management zones than for three. 572 
This is essentially due to the fact that the merging is performed iteratively by maximizing the ZOI resulting from 573 
the fusion of two neighbouring zones. Once a fusion has been made, it cannot be rolled back to check whether 574 
another order of merging would have ultimately led to a higher ZOI value. It must be understood that the order 575 
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of fusion is critical. Here, the merging procedure is not submitted to a global optimization approach but only to a 576 
maximization approach at each iteration. 577 
 578 
 579 
 580 
 581 
 582 
 583 
 584 
 585 
 586 
 587 
 588 
 589 
 590 
 591 
 592 
 593 
 594 
 595 
 596 
 597 
 598 
 599 
 600 
 601 
 602 
 603 
 604 
Figure 9. Impact of Noisy Datasets and Machinery Characteristics on the ZOI Indicator for Field 2.  605 
 606 

By changing the shapes of the ZOI curves, the parameter setting of the  spatial footprint grid, i.e. spatial 607 
footprint, grid orientation and grid transposition, will have an influence on the selection of the optimal number of 608 
management zones for the grower or the technical advisor. This is interesting because it demonstrates that the 609 
resulting management map is sensitive to the operation to be performed within the field. It must be clear that the 610 
order of fusion of neighbouring zones is also likely to be affected. Therefore, the resulting zoning might be 611 
different but more closely related to the future variable rate application. The influence of management 612 
constraints is discussed in the next section. 613 
 614 
4.2.2 Influence of the management constraints on the delineation of management zones. 615 
 616 

Adding management constraints to the region merging algorithm clearly influences the delineation of 617 
management zones (Fig. 10). It can be seen that multiple regions delineated after the region growing procedure 618 
(Fig. 7b) are not merged and appear in the final management map (Fig. 10). Neighbouring zones are still merged 619 
in favour of a maximization of the ZOI indicator but some fusions are not allowed given the management 620 
constraints that have been set (Tab. 2). This enables agronomical expertise to be accounted for while still 621 
considering the fertilization application to be performed. Note that the management constraints are implemented 622 
during the merging process of the algorithm which means that the initial zones, i.e. those that arise from the 623 
growing procedure before merging, are the same. 624 
 625 

The ZOI indicator alone is a relevant parameter for the region merging algorithm. However, it has some 626 
limitations regarding the order of fusions between neighbouring zones, which makes management constraints 627 
important to consider. For instance, the ZOI resulting from the fusions of two given regions is not weighed by 628 
the surface of these regions. This implies that the merging of two small regions will lead to a lower application 629 
error than that arising from the fusion of large regions. Indeed, the ZOI is calculated as a sum of squared 630 
differences between the phosphorus requirements at a given spatial position and those actually provided by the 631 
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machine. Fewer points are available in smaller zones which is likely to make the sum of squared differences 632 
lower. Therefore, small regions are likely to be merged first. This might be desirable for the grower but it still 633 
depends on management decisions. The incorporation of management constraints makes the proposed approach 634 
more sensitive to agronomic expertise and more related to the objectives of the grower. Here, simple 635 
management constraints have been proposed and especially in relation to fertilization applications.  636 
 637 

 638 
 639 
Figure 10. Impact of Management Constraints on the Resulting Variable Rate Application Map. A. Without 640 
management constraints. B. M1 < 40kg/ha. C. M1 < 60kg/ha and M2 < 20% 641 
 642 

5 Conclusion 643 
 644 

This work presents a region growing and merging procedure adapted to the delineation of management zones 645 
from irregularly-spaced within-field data. Overall, the proposed algorithm generates contiguous and compact 646 
management zones which are consistent with what could arise from intuitive delineation. These management 647 
zones are delineated from an operational point of view thanks to the use of machinery and technical management 648 
constraints in the zoning algorithm. Both constraints were shown to have a significant influence on the results of 649 
the delineation through a sensitivity analysis. Moreover, the methodology proposes to delineate management 650 
zones by integrating a range of possible zonings for the same field. The first zoning, very detailed, intends to 651 
maximize the technical opportunity of the application while the second, coarser, aims to simplify the 652 
representation of the field while making sure that the differences across the field are still well highlighted. This 653 
approach raises questions regarding the incorporation of other constraints, i.e. economic and environmental, 654 
which would enable to account for the specificity of the situation under consideration and to propose an optimal 655 
number of management zones. To further investigate the methodology, it could be interesting to improve the 656 
merging step of the zoning algorithm by implementing a global optimization approach. By doing so, it would be 657 
possible to roll back in the merging process and look for fusions that would ultimately lead to a better delineation 658 
of the field. Finally, the proposed approach should be tested on multiple datasets of different natures to ensure its 659 
robustness. 660 
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