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Abstract 

 

Yield maps are a powerful tool with regard to managing upcoming crop productions but can 

contain a large amount of defective data that might result in misleading decisions. The 

objective of this work is to help improve and compare yield data filtering algorithms by 

generating simulated datasets as if they had been acquired directly in the field. Two stages 

were implemented during the simulation process (i) the creation of spatially correlated 

datasets and (ii) the addition of known yield sources of errors to these datasets. A previously 

published yield filtering algorithm was applied on these simulated datasets to demonstrate the 

applicability of the methodology. These simulated datasets allow results of yield data filtering 

methods to be compared and improved.  

 

Keywords: Filtering, Simulation, Yield 
 

Introduction 

 

Yield maps are a powerful tool when it comes to make informed management decisions with 

regard to upcoming crop productions. However, yield datasets can contain a large amount of 

defective data (Griffin et al., 2008). To robustify these datasets, multiple works have reported 

sequential screening processes to remove most of the sources of errors (Simbahan et al., 2004; 

Sudduth et al., 2007). From a general perspective, these authors have validated their approach 

because the yield distribution and spatial structure were significantly improved after removing 

these defective observations. Even though this validation seems appropriate, it is not possible 

to evaluate objectively an approach towards a specific type of error or even to compare 

multiple filtering methods. Experts are sometimes involved in the validation step but this kind 

of validation is relatively rare. Furthermore, it is relevant to wonder whether an expert is truly 

able to identify all the errors in a dataset. As crops cannot be harvested twice, it is difficult to 

make use of ground-truth measurements to validate some proposed methodologies. 

 

Synthetic datasets are widely used in many application domains to overcome these limitations 

(Breunig et al., 2000). From a general perspective, algorithms are often initially validated on 

synthetic datasets that include noise, and are then, applied on real datasets. Since the main 

sources of errors in yield datasets are known, it is conceivable to integrate these errors in 

synthetic datasets to simulate real yield datasets. Authors essentially focus on lowering (i) the 

number of false positives (swamping effect), i.e. to avoid wrongly classifying an observation 

as a defective observation or (ii) the number of false negatives (masking effect), i.e. defective 

data are not identified as such (Ben-Gal, 2005). This work proposes a methodology to 

produce simulated yield datasets. So far, the efficiency of yield filtering approaches has never 

been assessed objectively which makes users unable to choose an appropriate method when it 

comes to correct yield datasets. These simulated datasets will help evaluate and compare yield 

post-processing methods.  
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Material and methods 

 

The simulation process consisted in two major steps: (i) the creation of spatially correlated 

datasets and (ii) the addition of known yield sources of errors to these datasets. These sources 

of errors can be categorized into four major groups: (i) the harvesting dynamics of the 

combine harvester, (ii) the continuous measurements of yield and moisture, (iii) the accuracy 

of the positioning system and, (iv) the harvester operator (Lyle et al., 2013). Fields were 

created with geometric shapes, i.e. square or rectangles, to facilitate the construction of 

harvest passes. These passes were considered mostly harvested in straight lines. Some specific 

harvest patterns were added during the simulation, e.g. harvest turns, but adding complex 

harvest patterns inside the fields was not considered in this work. Fields were delimitated by 

headlands, modelled by straight lines perpendicular to harvest passes. The methodology was 

developed using the R statistical environment (R Core Team, Vienna, Austria). 

 

Modelling the sources of errors in spatially correlated datasets 

First step of the simulation process was to create spatially correlated datasets as yield datasets 

generally exhibit some spatial autocorrelation to a greater or lesser extent (Sudduth et al., 

2007). Gaussian random fields were simulated via the sequential simulation algorithm in the 

gstat package (Bivand et al., 2013). Main sources of errors were modelled and added to the 

previously defined spatially correlated datasets. Let yi(s,t) be the yield value of an observation 

i located at a spatial position s and acquired at a time t. For each error e to apply to an 

observation i, a function fe will be applied to i and will result in the transformation of yi(s,t) 

into y’i(s’,t’) as follows: 
𝑓𝑒 ∶ 𝑦𝑖(𝑠, 𝑡) → 𝑦𝑖

′(𝑠′, 𝑡′)                                                           (Eq. 1)  

 

Note that y’i, s’ and t’ are not necessarily different from yi, s and t respectively. All the errors 

were added in a specific order that follows the description of the sources of errors. Only the 

simulation of the main sources of errors will be detailed. 

 

Speed changes 

Speed changes are a relatively common phenomenon during harvest. They induce (i) an 

increase or decrease in the number of total observations given the constant sampling 

frequency of the sensor and (ii) yield variations. This source of error can be modelled by the 

following function 𝑓𝑠𝑝𝑒𝑒𝑑 ∶ 𝑦𝑖(𝑠, 𝑡) → 𝑦𝑖
′(𝑠′, 𝑡). The model will consist in two steps; the 

transformation of 𝑦𝑖(𝑠, 𝑡) into 𝑦𝑖(𝑠′, 𝑡) and then that of 𝑦𝑖(𝑠′, 𝑡) into 𝑦𝑖′(𝑠′, 𝑡). 

 

Step 1: 𝑦𝑖(𝑠, 𝑡) into 𝑦𝑖(𝑠′, 𝑡). Speed changes are assumed graduate, to a lesser or greater 

extent, and therefore were chosen to be modelled by sigmoid functions (Fig. 1). By varying 

the shape of the sigmoid, a large range of speed change dynamics can be simulated. 

Considering a constant sampling frequency, speed changes can be simply understood as a 

change in distance between consecutive observations (Fig. 1, right).  
 

Step 2: 𝑦𝑖(𝑠′, 𝑡) into 𝑦𝑖′(𝑠′, 𝑡). When speed strongly decreases, yield values significantly 

increase because the harvest area (distance travelled by cutting width) is largely decreased 

while grain flow remains constant (Eq. 2). The distance between two observations necessarily 

depends on the sampling frequency and the speed of the machine. Reasoning is reverse when 

speed increases.  

𝑌𝑖𝑒𝑙𝑑 =  
𝐺𝑟𝑎𝑖𝑛 𝑓𝑙𝑜𝑤

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 ×𝐶𝑢𝑡𝑡𝑖𝑛𝑔 𝑤𝑖𝑑𝑡ℎ
                                     (Eq. 2) 

 



The stronger the speed change, the stronger the yield variation. As speed stabilizes, grain flow 

gets stable too and yield values are back to normal. As a consequence, to affect a new yield 

value to an observation i during a speed change, there is a need to take into account the speed 

changes that occurred before this record i. For each harvest pass, the yield transformation is 

defined as follows: 

𝑦𝑖
′(𝑠′, 𝑡)𝑘 = 𝑦𝑖(𝑠′, 𝑡)𝑘 +  ∑

𝐷𝑖𝑓𝑓(𝑗)

2𝑖−𝑗    ∀ 𝑡ℎ𝑒 ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑝𝑎𝑠𝑠 𝑘
𝑗=𝑖
𝑗=1                 (Eq. 3) 

where k stands for the kth pass.  

 

 
Figure 1 Simulation of an increase in speed (left) and the corresponding shift in distance 

between consecutive points (right). 

 

The factor 2𝑖−𝑗 makes sure that a speed change occurring during the acquisition of 

observation j (j<i) has more impact on the yield value of observation i when both 

observations are acquired simultaneously than when they are very spaced. This factor can be 

seen as an attenuation factor. 𝐷𝑖𝑓𝑓(𝑗) takes into account the intensity of speed change 

between an observation j and the observation acquired previously j-1 as follows: 
 

𝐷𝑖𝑓𝑓(𝑗) = (
 𝑔(𝑡)𝑗−𝑔(𝑡)𝑗−1

𝑔(𝑡)𝑗−1
) ×𝑦𝑗(𝑠′, 𝑡)𝑘                                       (Eq. 4) 

 

where 𝑔(𝑡)𝑗 and 𝑔(𝑡)𝑗−1 are the speeds of the combine at observation j and j-1. Note that 

when speed is constant at j and j-1, 𝐷𝑖𝑓𝑓(𝑗) equals zero and 𝑦𝑖
′(𝑠′, 𝑡) equals 𝑦𝑖(𝑠′, 𝑡). 

 

Low cutting width 

Unknown crop width entering the header is a critical issue in yield data processing. 

Overestimated swath width (SW) will result in yield values significantly lower than expected 

(Eq. 2). Passes harvested with a low cutting width are located at a distance inferior to the full 

width of the cutting bar from previously harvested passes.  

 

Simulation: 𝑓𝑤𝑖𝑑𝑡ℎ ∶ 𝑦𝑖(𝑠, 𝑡) → 𝑦𝑖
′(𝑠′, 𝑡). Assume ten passes Pk (k=1 to 10) harvested from P1 

to P10 from which one has been randomly selected and considered to be harvested with a low 

cutting width (P8 in this case). A random number RP, ranging between 0 and 1, defines the 

amount of SW that is used to harvest P8 (Fig. 2). Hence, yield values in P8 are transformed 

using the following equation: 
𝑦𝑖

′(𝑠, 𝑡) = 𝑦𝑖(𝑠, 𝑡)×𝑅𝑃                                                       (Eq. 5) 

 

From a spatial perspective, all 𝑦𝑖
′(𝑠, 𝑡) observations in P8 are shifted towards the pass 

previously harvested, i.e. P7, by a distance dwidth equal to 𝑆𝑊×(1 − 𝑅𝑃) as follows: 
 

 𝑦𝑖
′(𝑠′, 𝑡) = 𝑦𝑖

′(𝑠 − 𝑑𝑤𝑖𝑑𝑡ℎ, 𝑡)                                                (Eq. 6) 

Note that the reduced cutting width is applied to a full harvest pass. 



 
Figure 2 Simulating a pass harvested with a low cutting width. P8 has been harvested with a 

non-full swath width and was brought closer to the previously harvest pass P7. The distance 

between P8 and P9 is still equal to SW. 
 

Time delays 

Lag time delay was not modelled during the simulation. It was considered that lag time had 

already been accounted for, which means that yield observations had been shifted accordingly 

to meet their real neighbourhood. Filling and emptying times, respectively start and end pass 

delays, are responsible for low yield estimates when the combine harvester enters or leaves a 

pass.  

 

 
Figure 3. Simulating grain flow dynamics at start (left) and end rows (right).  

 

Simulation: 𝑓𝑑𝑒𝑙𝑎𝑦 ∶ 𝑦𝑖(𝑠, 𝑡) → 𝑦𝑖′(𝑠, 𝑡). Grain flow dynamics near start and end rows have 

been reported multiples times (Lyle et al., 2013; Simbahan et al., 2004). Grain flow increases 

until reaching a plateau, the permanent regime, and then decreases again as the combines 

leaves the harvest pass (Fig. 3). Note that the x-axis is plotted backwards for end delay times. 

Grain flow dynamics at both start and end rows were then modelled by similar functions, 

more specifically with spherical functions. These functions are used to weigh the yield values 

at the beginning and end of rows as follows: 

𝑦𝑖
′(𝑠, 𝑡) = 𝑦𝑖(𝑠, 𝑡)×

𝑦𝑖(𝑠,𝑡)

𝐶𝑘+𝐵𝑘
                                                    (Eq. 7)    

where Bk is the yield intercept and Ck is the range of yield values during filling or emptying 

times. Note that the shape of the curves is slightly different (Figure 3). Indeed, when looking 

at the shape of previously reported grain flow dynamics, yield is more underestimated when 

the combine enters the crop than when it leaves (Blackmore, 1999; Simbahan et al., 2004).  

 

Estimating simulation parameters from real yield datasets  

Simulation parameters (range and bounds) were set after a review of the literature and an 

evaluation of yield maps from five fields located near Evreux, north-west of France (Table 1). 

For these five fields, yield measurements were obtained with a grain flow sensor mounted on 

a combine harvester (New Holland, Turin, Italy). Passes were mostly harvested in straight 



lines. Cutting width was 9 meters for the five fields. The literature and these yield maps were 

analysed to extract the major characteristics of each known sources of error to make sure that 

simulated datasets were reliable. When the information was not available in the literature, 

only the five fields under study were used to estimate the corresponding parameters. Once 

yield datasets were simulated, three published filtering methods (Simbahan et al., 2004; 

Sudduth et al., 2007, Sun et al., 2013) were applied on these simulations to determine whether 

the amount of defective observations detected was consistent with that reported in the 

literature. Twenty simulations were run and submitted to the filtering algorithms. 

 
Table 1 Yield spatial structures and amounts of errors found in real datasets and literature, 

and those used during simulations. Note that all characteristics are not presented. (-) 

indicates that clear characteristics were not found. 

Simulation Description 
Characteristics 

Simulated data Real data Literature 

Spatial 

structure  

Range (% of maximal 

length of the field) 
10-50 % 10-20% 

30% (A); 40-50% 

(E); 25-30% (I) 

Nugget (% of the sill) 0-60% 30-70% 

30% (D); 50% 

(E) ; 20-30% (I) ; 

15-65% (G) 

Speed 

changes 

% of passes with at least 

one speed change 
From 25 to 60%  

From 30 to 

80%  
(-) 

 

Speed variation between 

start and end of speed 

change 

Between 0 and 

300%.  

From 10 to 

250% 
(-) 

Low 

cutting 

width 

Proportion of passes 

harvested with a reduced 

cutting width 

From 0 to 15% Around 10% 

17% (H); 2-11% 

(D) 

Mean cutting width 

equal to 89% (A)  

 

Start pass 

delay 

Number of observations 

involved (depends on the 

frequency acquisition) 

From 3 to 15 From 5 to 20 
5-6 (F) ;5-20 (C)  

0-4 (B) 

Bk (% of the value  

of the plateau) 
0-50%  0-50%  

30-50% (C) ; 

 0-50% (F) 
A: Drummond et al. (1999) – B: Griffin et al. (2008) – C: Lyle et al. (2013) - D: Molin et al. (2002) – E: Robinson et al. 

(2005) – F: Simbahan et al. (2004) – G: Sudduth et al. (2007) – H: Sudduth et al. (2012) - I: Sun et al. (2013). 

 

Case study: Identifying yield local outliers 

One of the major advantages of these simulated datasets is their ability to provide objective 

metrics to assess the relevancy of a particular approach towards yield outlier detection. These 

datasets can be used on multiple occasions: (i) to compare two methods within a specific case 

or under very particular conditions, (ii) to compare two approaches under a large set of 

situations, or (iii) to find the optimal settings of a method under known conditions. In this 

work, simulated datasets were used to validate objectively a previously published yield 

filtering method (Simbahan et al., 2004). These authors came up with a sequential screening 

process and validated their approach by looking at the yield distribution and spatial structure 

after removing defective observations. Here, the approach of Simbahan et al. (2004) was 

assessed more objectively by common quality metrics, especially the sensitivity, i.e. 

proportion of outliers correctly identified as such and the specificity, proportion of true 

observations correctly identified as such (Eq. 8). 



 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑁𝑏𝑟 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑁𝑏𝑟 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 
; 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑁𝑏𝑟 𝑡𝑟𝑢𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑛𝑜𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠

𝑁𝑏𝑟 𝑡𝑟𝑢𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
           (Eq. 8) 

 
These rates were calculated for each simulated dataset and were detailed for each type of error 

to assess the robustness of the approach towards specific errors. Given the amount of 

observations in yield datasets, it is preferable to remove as many outliers as possible to the 

expense of some normal or expected observations rather than leaving a large number of 

outliers. In that case study, sensitivity should be preferred to specificity. Note that the metrics 

used could be different depending on the application of simulated datasets. Twenty 

simulations were run and validation metrics were averaged over the simulations. 

 

Results and discussion 

 

Example of simulated datasets 

Figure 4 shows one realisation of the simulation process. The colour gradient ranges from 

bright (low yield values) to dark (high yield values). This simulated dataset exhibits a clear 

spatial correlation, with low-yielding areas at the centre and North-West of the field and 

relatively high-yielding areas in the remaining zones. Well-known sources of errors are 

clearly visible, especially passes harvested with a low cutting width, harvest turns, speed 

changes, and start and end-pass delays at each start and end rows. This plot shows a relatively 

high number of transects harvested with a low cutting width, especially in the eastern part of 

the field. It is acknowledged that these simulated datasets have their limits. For instance, 

harvest patterns are relatively simple within the fields, i.e. most passes have been considered 

harvested in straight lines. Only known sources of errors can be modelled which means that 

some specific cases might not be taken into account during simulations.  

 

Table 2 Output of data filtering methods on real and simulated datasets.  

Related article Error(s) removed 

% observations 

removed in real 

datasets 

% observations 

removed in simulated 

datasets 

Simbahan et al. 

(2004) 

All errors 13-20% 8.3-20.7% 

Start/end delay and 

combine header up 
80% of all errors 31-84% of all errors 

Sudduth et al. 

(2007,2012) 

Start pass delays 3-10% 2.2-7.4% 

End pass delays 1-7% 2.1-6.7% 

All errors 12.6-26.9% 10.1-21.5% 

Sun et al. (2013) All errors 13.1-19.6% 5.3-23.1% 

 

Reliability of simulated datasets  

The proportion of defective observations identified by previously reported data filtering 

methods in simulated datasets was close to that in real datasets (Table 2). The stronger 

divergence was observed for the approach of Simbahan et al. (2004) according to the 

proportion of observations acquired during start/end pass delays and those recorded when the 

combine header was up. Note however that in the simulation process, the combine header was 

considered down all the time which is why the proportion of observations removed was lower 

in the simulated datasets in that specific case. It should be noted that the proportion of 

observations corresponding to start and end pass delays reported by Sudduth et al. (2007) was 

only between 42 and 55% of the total number of observations removed, i.e. in the range 

observed with simulated datasets. The methodologies described by Sudduth et al. (2007, 

2012) and Sun et al., (2013) worked similarly between real and simulated datasets. 



 

 
Figure 4. An example of synthetic yield dataset. Yield data range from low (bright) to high 

(dark) values. Corresponding colours are red (low yield values) and green (high yield values) 

for the coloured image. Be aware that the coloured image is more readable. 

 

Table 3. Sensitivity and specificity (percentage) of the approach proposed by Simbahan et al. 

(2004) with regard to the detection of known sources of errors. Mean and (standard 

deviation) of the twenty simulations are reported. 

 Total 
Speed 

changes 

Low cut 

width 

Harvest 

turns 

Start/end 

pass delays 

Positioning 

inaccuracy 

Sensitivity 
62.0 

(9.4) 

13.4 

(5.1) 

48.1 

(15.9) 

45.5 

(37.8) 

90.6 

(2.7) 

15.6 

(5.7) 

Specificity 
95.7 

(2.5) 
- - - - - 

Proportion 

of outliers 

20.5 

(3.6) 

2.9 

(0.6) 

4.8 

(3.5) 

1.1 

(1.0) 

10.1 

(2.06) 

1.1 

(0.44) 

 

Case study: Objective evaluation of a yield filtering approach 

The approach of Simbahan et al. (2004) can be evaluated at the whole dataset level and for 

each known sources of errors (Table 3). Specificity is not detailed for each given type of error 

because this metric only makes sense for the overall dataset. First of all, the simulation 

process covers a wide range of cases with varying proportions of outliers of different types. A 

very detailed evaluation of the approach of Simbahan et al. (2004) is beyond the scope of this 

work but general conclusions can be reported. Global sensitivity reaches more than 60% 

which means that a high number of defective observations has been removed. Note that very 

few normal observations have been filtered out (specificity is above 95%). Be aware that all 

the observed sensitivity values are not absolute values and should be compared to the outputs 

of other filtering methods. It is clear that this approach did not identify all types of errors 

equally. Start and end pass delays are almost detected in all cases because Simbahan et al. 

(2004) propose to manually select a threshold after looking at the grain flow dynamics along 

passes. Positioning inaccuracy has a low sensitivity given the fact that Simbahan et al. (2004) 

do not account for this issue. Other filters, especially that of local outliers, might have 

detected some of these positioning inaccuracies that most likely had an abnormal yield value 

with regard to their neighbourhood. The remaining sources of errors, i.e. speed changes, low 

cutting width or harvest turns among others are assumed to be detected by global and local 



filters. The ability to detect these errors depends on the outlier distance. For instance, if speed 

changes are slight, the local outlier filter may miss this. Future analysis could focus on the 

non-detected outliers to evaluate their influence on the global or local statistics of the dataset. 

 

Conclusion  

 

A methodology has been proposed to evaluate and compare, objectively and quantitatively, 

yield filtering methods with regard to their ability to remove defective observations from yield 

datasets. The proposed simulated datasets might be used to determine to what extent a given 

approach is robust to a specific type of error or more generally to defective observations. 

Simulations could also help analyse whether each step of sequential filtering procedures 

identify only one type of error or a mix of them. Simulated yield datasets can be significantly 

improved by incorporating more sources of errors, such as, lag time delays, moisture errors, 

fields harvested by two combines at the same time or harvested in two times, grouped GPS 

positioning errors, or creating fields with more complex shapes. These simulations do not 

exempt any filtering approach to be tested on real yield datasets but provide an opportunity 

for filtering algorithms to be compared and improved.  
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