
Practical use of fuzzy implicative gradual rules in knowledge
representation and comparison with Mamdani rules
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Abstract

Thanks to their ability to model natu-
ral language, fuzzy rules are very popu-
lar in expert knowledge representation.
Mamdani fuzzy systems are widely used
for process simulation or control. Never-
theless, fuzzy implicative rules, and es-
pecially gradual rules, provide another
kind of knowledge representation, which
can be very useful in approximate rea-
soning. In this paper, the two types of
rules are compared according to their be-
havior in some typical situations such as
rule interpolation, combination of a spe-
cific rule with a more generic one. The
comparison is carried out with regard to
the output possibility distribution, the
crisp inferred value and the rule base
consistency. Finally, we discuss the com-
plemental aspects of these rules and we
show how in certain cases gradual rules
may constitute an interesting alternative
to Mamdani rules.

Keywords: Fuzzy logic, Conjunctive
rules, Mamdani rules, implicative rules,
gradual rules, interpolation

1 Introduction

Fuzzy logic has proven to be a powerful tool to
design knowledge based linguistic models, where
the domain knowledge is translated into an ini-
tial structure and parameters. The model accu-
racy can be enhanced by using data driven search

methods to tune or to automatically learn the
structure and the parameters. Fuzzy controllers
or fuzzy expert systems have been widely used in
process control or modeling. They are most use-
ful when modeling processes whose monitoring es-
sentially relies on expert knowledge, due to a lack
of available mathematical modeling. Fuzzy logic
based decision support tools have an intrinsic ex-
planatory power. It can be a very good reason for
using them preferably to other techniques, when
interpretability is at stake.

A fuzzy rule is generally written as : “If X is A
then Y is B”, where A and B are fuzzy sets en-
coding linguistic concepts. However, this common
formulation may correspond to different seman-
tics and different forms of reasoning.
Fuzzy rules can be split in two groups: con-
junctive possibility rules and implicative rules [4].
The most common approach in fuzzy controllers
or fuzzy expert systems, whether built from ex-
pert knowledge or learnt from data, is the Mam-
dani approach [5], that uses conjunctive possibil-
ity rules. Those rules can be formalized as a con-
junction µA ∧µB, and they model the occurrence
of possible value pairs. Mamdani systems, and
their counterpart zero-order Takagi-Sugeno sys-
tems, where the rule consequent is a scalar in-
stead of a fuzzy set, are well suited to some situ-
ations where expert knowledge can be considered
as an accumulation of possible value examples,
also called positive information. The fuzzy infer-
ence system interpolates between these values to
provide a prediction or control value.

Mamdani or Sugeno models do not apply to other
cases where expert knowledge is available under



a different form, corresponding to constraints or
restrictions on possible values. Nevertheless, the
need for this kind of knowledge representation is
natural and appears in complex system model-
ing. For instance, in traditional food industry
processes, such as cheesemaking or winemaking,
many processes are composed of a sequence of
several unit operations, with domain knowledge
and data available for each unit.Quality predic-
tion or defect detection applies to the final prod-
uct, and decision tools must take in account all us-
able forms of knowledge, and be designed accord-
ingly. For instance, traditional hard cooked type
cheesemaking includes three major steps: coagu-
lation of the milk, draining of the curd (20 hour
processing) and eventually ripening of the young
cheese obtained after draining (it may take sev-
eral months). The intermediate product (young
cheese) is characterized by some physico-chemical
measurements, such as moisture content or pH.

The domain expert can formulate rules to express
the relationship between these characteristics and
the final quality, or the plausible appearance of a
defect in the matured cheese, a few months later.
These rules do not express a simple interpolation
operation, and some of them must have the ability
to express restrictions, in order to be instrumental
when making a context driven choice between dif-
ferent possible situations. For instance the follow-
ing rule applies: “If Moisture Content is very low
then add less salt at the beginning of the ripening
stage to avoid Corky Consistency”.

In this context, the second kind of fuzzy rules
mentioned higher up becomes necessary. Implica-
tive rules are modeled as µA → µB, where →
is a fuzzy implication connective. Such rules ex-
press constraints on input-output value mappings.
Therefore some output values become impossible
in a given context, contrary to conjunctive possi-
bility rules, where an input-output mapping can
always be derived. Implication rules represent
what is called negative information[4].

Possibility theory allows to represent information
by means of possibility distributions[7, 1]. A pos-
sibility distribution assigns to each value u ∈ U
a possibility degree πx(u) lying between 0 and 1.
πx(u) = 1 means that nothing prevents x from be-
ing equal to u. Another useful notion is the con-

cept of guaranteed possibility δX(u). δX(u) = 1
means that x = u has been actually observed. δ
is a measure of evidential support. Furthermore,
possibility values equal to zero have a very differ-
ent meaning depending on the rule type, either
ignorance (δX(u) = 0) or interdiction(πx(u) = 0).
When there is both negative and positive infor-
mation, both sources of information must be con-
sistent: for instance an observed fact should not
be stated as impossible. Using the information in
the output possibility distributions, a defuzzified
output value can be extracted, and used as the
system crisp output.

Despite the need for them and though the formal-
ism of implicative rules has been well established,
they have not yet been much used. The purpose
of this paper is to highlight specific features of
implicative rules that make them more attractive
than Mamdani rules in practical reasoning situa-
tions. First we recall in section 2 the principles
of conjunctive possibility rules, then we introduce
in section 3 the formalism of implicative rules,
and we detail the particular case of gradual im-
plicative rules. Section 4 compares the behavior
of implicative and conjunctive possibility rules in
terms of output possibility distribution, inference
with crisp values, and interpolation behavior. In
complex systems, all inputs are not present in all
rules. They may include rules where some input
variables are missing. We study the case of such
a rule base including an incomplete rule. Finally
we discuss some perspectives.

2 Conjunctive possibility rules

For a given variable X, a guaranteed possibility
distribution associated to statement “x ∈ Ai is
possible” is such that:

∀u ∈ U, δX(u) ≥ µAi
(u)

Conjunctive possibility rules[2], “if X is A then
Y is B”, can be understood as: “the more X is
A, the more possible it is that Y lies in B”. In
this approach, the operator “then” is modeled by
a conjunction and the output of the rule is a guar-
anteed possibility distribution: δY |X = µA ∧ µB .

The traditional Mamdani conjunction operator is
the min: ∀(u, v) ∈ U × V ,



δY |X(u, v) ≥ min(µA(u), µB(v))

The meaning of δY |X(u, v) is: it is possible
that Y is B when X is A at least to level
min(µA(u),µB(v)) (maximum of specificity).

If we consider a crisp input u0 and if µA(u0) = α
with α ∈ [0, 1], values in B are guaranteed at
degree α. So the output B′ is given by the trun-
cation of B at level α as shown on figure 1.

Rule aggregation is disjunctive. As a rule yields a
guaranteed possibility degree, when two or more
rules are fired, all the corresponding degrees are
guaranteed. The maximum represents a lower
bound of possible values:

δK = max
i=1,...,n

δi
Y |X (1)

for a knowledge base K =
{Ai → Bi, i = 1, ..., n} of n parallel
fuzzy rules1. δY |X(u, v) = 0 means that if X = u,
no rule can guarantee that v is a possible value
for Y . Ignorance is then represented by a null
possibility distribution: δY |X(u, v) = 0,∀v.

3 Implicative gradual rules

Implicative rules are a straightforward application
of Zadeh’s theories[8] of approximate reasoning.
According to Zadeh, each piece of knowledge can
be considered as a fuzzy restriction on a set of
possible worlds. The statement “ X is Ai ” can
be depicted as:

∀u ∈ U, πX(u) ≤ µAi
(u) (2)

“ X is Ai ” now means: “ X must be in Ai ”,
it represents a constraint, i.e., negative informa-
tion. Fuzzy implicative gradual rules can extend
classical logic by means of the generalized modus
ponens (GMP)[6]. In classical logic, modus po-
nens is:

A ∧ (A → B) |= B

where |= represents the logical inference. In fuzzy
logic, the generalized modus ponens gives:

A′ ∧ (A → B) |= B′ (3)

1Parallel rules have the same input space U and the
same output space V .

It means that for a fact A′, we are able to deduce
a value B′ through the implication A → B. B′ is
the upper bound of possible values for Y . For an
input A′, the output value B′ is given by:

µ′
B(v) = sup

u∈U
∧(µA′(u), µA(u) → µB(v)) (4)

The conjunction and implicative operators cannot
be chosen independently. Equation 3 and 4 show
they are interrelated. Consequently, the choice of
∧ determines the implication operator.

There are several implicative rule types [2]. The
main ones are: gradual rules and certainty rules.
In this article, we only focus on gradual rules.
Implicative gradual rules can be understood as:
“ The more X is A, the more Y is B ”. When
∧ = min, → is the Gödel implication:

a → b =

{

1 if a ≤ b
b else

As we can see on figure 1, for a rule A → B and a
crisp input u0 ∈ Supp(A), the core of B′ is always
larger than the core of B. Actually, this type of
reasoning is driven by similarity: if the value of
X is close to the core of A, then the value of Y
must be close to the core of B.

1

0
U

µA

u0

α

Rule condition

1

0
V

µβ′

α
µβ

Gradual rule

Mamdani rule

Rule conclusion

Figure 1: Inference with one rule and a crisp input

With this kind of rules, for a crisp input u0,
if u0 /∈ Core(A), Core(B′) becomes larger than
Core(B). If u0 /∈ Supp(A), Core(B′) becomes
the whole output space V : it expresses ignorance.
Equation 2 shows that these rules express con-
straints on a set of possible values. Possibility is
not guaranteed: some values considered as possi-
ble by a rule can be forbidden by others. Each
rule can be represented by a conditional possibil-
ity distribution πi

Y |X = µAi
→ µBi

. The possibil-

ity distribution πK is given by the conjunction of
πi

Y |X :



πK = mini=1,...,n πi
Y |X

For a possibility degree πK(u, v) = 0, if X = u,
then v is an impossible value for V . Furthermore,
a possibility distribution πK(u, v) uniformly equal
to 1 symbolises ignorance.

4 Rule base comparison

In this section, the different rules are compared
according to different criteria: inference mecha-
nism, interpolation ability and rule accumulation.
Rule base behavior in the presence of incomplete
rules is also examined.

4.1 Inference mechanism

The use of the sup-min composition in equation
5 can be explained by the assumption that once
built, the relation obtained by the disjunction of
conjunctive rules is interpreted as a whole as a
model. The fuzzy system is then viewed as a con-
straint, using a kind of closed world assumption,
although each rule was originally interpreted as a
piece of imprecise data.

The output possibility distribution can be com-
puted for each rule and then all the distributions
are aggregated according to equation 1:

B′ = A′o(
n
⋃

i=1

Ai ∧ Bi) =
n
⋃

i=1

(A′o(Ai ∧ Bi)) (5)

because of the commutativity of o and
⋃

opera-
tors. In consequence, with Mamdani rules, infer-
ence is quite easy. This method, named FITA2,
corresponds to the right part of equation 5.

For an implicative rule base, the output B′ is
given by:

B′ = A′o
⋂n

i=1
Ai → Bi

When A′ is a crisp input, the FITA mechanism
can be used but, in the general case, as the o
and

⋂

operators do not commute, the previous
equality no longer stands:

B′ = A′o(
⋂n

i=1
Ai → Bi) ⊆

⋂n
i=1

(A′oAi → Bi)

2FITA means ”First Infer Then Aggregate”

Rule aggregation has to be achieved before infer-
ence. This inference method is called FATI3.

4.2 Interpolation between rules

The interpolation mechanism used for Mamdani
rules is described in depth in [3]. Let us consider
input/output partitions such as Core(Ai) = {ai}
and Supp(Ai) = [ai−1, ai+1].

Conjunctive possibility rules Figure 2 shows
the output possibility distribution inferred by
three Mamdani rules, Ai ∧ Bi (i = 1, 2, 3), when
input u0 moves from a1 to a2 (a): only trunca-
tion levels of B1 and B2 are affected (b). Usually,
as the maximum of the distribution is an inter-
val, a defuzzification step is needed. Subfigures
(c) and (d) respectively show results using mean
of maxima and centroid defuzzifications. Only
the centroid defuzzification leads to a continuous
function, which is generally monotonic. However,
contrary to what could be expected, this function
is not linear.

V

U

a3 Ua2u0
a1

A1 A2 A3 B1 B2 B3

b3b2b1

B’

V

b3

b2

b1

a1 a2
a3 U

V

b3

b2

b1

Maxima

a2
a3a1

(c) (d)

(b)(a)

Mean of maxima
Centroid

Figure 2: Interpolation with Mamdani rules

Gradual implicative rules Figure 3 illus-
trates the case of three gradual rules Ai → Bi(i =
1, 2, 3). Due to the fuzzy partition structure, the
maximum is unique (b) and defuzzification is not
necessary in that case. Subfigure (c) shows the
linear evolution of this unique maximum.

3FATI means ”First Aggregate Then Infer”
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Figure 3: Interpolation with gradual implicative
rules

4.3 Influence of the fuzzy set parameters

Let us consider two rules triggered at the same
level.

Conjunctive possibility rules When two
trapezoidal output fuzzy sets have equal widths,
the inferred value (mean of maxima or centroid)
is equal to y such as µB1

(y) = µB2
(y). This result

is the one expected. Nevertheless, if one output
set is wider than the other, the defuzzified value
moves towards the wider one, which is counter-
intuitive, as shown in the left part of figure 4.

Gradual implicative rules This behavior is
impossible with gradual implicative rules because
rules are aggregated in a conjunctive way.
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Figure 4: Parameter influence

4.4 Incomplete rules

This section examines the interesting case of a
rule base which includes incomplete rules. Let
us consider a system of two rules, with a specific

rule: “if X is A1 and if Y is B, then Z is C1”and
a more general one: “if X is A2, then Z is C2”. In
the following examples (figures 5 and 6), an input
value b is set for Y such as µB(b) = β and the
X input value varies from a1 to a2. Let a′ the U
value such as µA1

(a′) = β and c′ the Z value such
as µC1

(c′) = β.

Conjunctive possibility rules Figure 5 shows
the output possibility distribution with a centroid
defuzzification. Between a1 and a′, the C ′

1 output
level is truncated to level β, while the C ′

2 level
increases. Then, when the input moves from a′

to a2, B is immaterial for the inference process.
Subfigure (c) shows the centroid defuzzification
result. The dashed line recalls the inference result
after defuzzification with two rules A1 ∧ C1 and
A2 ∧ C2. The specific rule inhibits the output
variation: in the illustrated case, it is impossible
to reach the C1 value.
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Figure 5: Conjunctive possibility rules: inference
with an incomplete rule

Gradual implicative rules When a varies
from a1 to a′, the influence of the specific rule is
restricted by β. This leads to more imprecision:
the maximum value of the possibility distribution
is not unique anymore. It corresponds to the in-
terval: [cinf , c′], cinf such as µC1

(cinf ) = µA1
(a).

The more the input value is close to a′, the nar-
rower the interval. Applying a mean of maxima
defuzzification operator gives an output similar to
the one given by Mamdani rules, but here piece-
wise linear. Between a′ and a2, B is immaterial
for the inference process, the maximum is unique.
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Figure 6: Implicative gradual rules: inference
with an incomplete rule

4.5 Rule accumulation

Adding a conjunctive rule enlarges the output
possibility distribution. Then a rule system will
always have a solution even if the rule base con-
flicts with knowledge representation. If an infinity
of rules is added to the rule base, the output pos-
sibility distribution approaches the membership
function of the whole referential. That behavior,
often hidden by defuzzification, is not intuitive
because we could think that adding new rules to
the knowledge base would lead to a more accurate
system.

Implicative rules formulate constraints on possi-
ble input/output mappings. The more rules in a
rule base, the more precise the output fuzzy set at
the risk of reaching inconsistency. Inconsistency
arises when for a given input πY/X(u, v) = 0,∀v.
This feature is interesting because it allows to
check logical consistency of the rule base.

5 Conclusion

Mamdani rules are widely used in knowledge
representation even if in some typical situations
the system may exhibit an unexpected behavior.
Gradual rules, which are implicative rules, may
constitute an interesting alternative to Mamdani
rules as they also provide an interpolation be-
tween rule conclusions.

Moreover, as the resulting possibility distribu-
tion is the upper bound of the authorized val-
ues according to the knowledge base, a null de-
gree means the corresponding value is impossi-

ble. Thus, this kind of rules can be used to model
range restrictions.

A related topic is to find the proper partition of
the input and output spaces, which ensures a good
behavior of the rule base. For instance one may
require that if the input is equal to the condi-
tion of one rule, the output should be precisely
the conclusion of this rule, despite the presence of
other rules. This behavior is generally impossible
to observe using Mamdani systems.
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