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Abstract

In complex simulations, multi-agents systems allow
to model virtual humans with an explicit cognitive
process representation. However, this cognitive pro-
cess is hard to model and is therefore generally sim-
plified in an application-dependant way. In order to
improve the realism of individual and collective be-
havior of these agents, we propose to integrate the
perception of events and the computation of agents
emotions in a fuzzy framework. The modeling of
the perception and its effect on emotions through
fuzzy rules enables the agents to consider properly
the virtual environment.

We show how different kinds of fuzzy rules can
help in the calculus of emotions. Computation of
emotions is based on the evaluation of events’ occur-
rence. Once the events are perceived by the agents,
our method uses the desirability of these events to
compute emotions relevant to crisis situations. We
illustrate this model with a traffic simulation exam-
ple.

Keywords: Fuzzy Rules, Events, Desirability,
Emotions, Multi-agent Systems, Virtual Reality

1. Introduction

In complex simulations, multi-agents systems allow
to model virtual humans with an explicit cogni-
tive process representation. However, this cognitive
process is hard to model and is therefore generally
simplified in an application-dependant way. In vir-
tual reality and social simulations, the humans im-
plicated in the simulated situation are virtual au-
tonomous humans [1] represented in a virtual en-
vironment which may interact with avatars. The
main difficulty is to obtain credible behaviors that
take into account personality, emotion and physiol-
ogy.

The agent cycle is classically considered as a per-
ception / decision / action loop. In this article,
we focus on the first part of the process, i.e. the
perception. An incorrect perception function may
lead to inconsistencies in the decision, hence reduc-
ing the plausibility of the situations. Furthermore,
we link the perception to the emotion modeling, be-
cause they impact each other: the percepts modify

the emotional state of the agent, and the emotional
state of the agent modify the way the agents per-
ceive the situation. There are some works from psy-
chological field about personality and emotion [2]
but the adaptation of these models to an agent ar-
chitecture is not straightforward because of a lack
of formal specification [3].

A virtual human is a cognitive agent situated in
a simulated environment. There are different pos-
sibilities in order to obtain an intelligent behavior:
imitate cognitive functioning [4], or manipulate a
set of observed behaviors [5]. The first approach
is difficult because of the complexity of the process
itself, for which there is no consensus in the com-
munity. The second approach ignores the decision
process, and is therefore not explanatory. Our ap-
proach is to build a hybrid architecture that sim-
ulates high-level motivational interdependencies in
behavior choice.

Our approach is based on cognitive intentional
agents because computations of emotions is only rel-
evant for cognitive agents. If an agent does not have
a cognitive process, it cannot have emotions. Fur-
thermore, the computation of emotions is based on
the agent’s goals. A major feature of the model is
to be able to trace back how the actions in the sim-
ulation create desirable or undesirable situations.
The modeling of the perception and its effect on
emotions through fuzzy rules enables the agents to
consider properly the virtual environment via the
desirability of the perceived situations.

The article is organized as follows. Section 2 mo-
tivates the use of fuzzy rule systems to include emo-
tions in the perception process of the agents. In sec-
tion 3, we present what kind of architecture can be
used with our perception modules and we give an
overview of the three modules. Then, in section 4,
we describe how to evaluate the events’ occurrence.
We show how to compute desirability in section 5
and how to compute emotions in section 6. The
three modules are illustrated with a vehicle simula-
tion throughout the model presentation. Finally we
conclude and give some perspectives in section 7.



2. Motivation

In the literature, a standard definition for emotions
does not exist. According to [6], there are 92 differ-
ent definitions of emotion in the literature. Here, we
use the definition of emotion as conscious states [7].
In emotions modeling, several works have been pro-
posed: Gratch [8] proposes the most accomplished
current model for the representation of agents’ emo-
tions. However, its formalism is complex and fully
dedicated to the representation of emotions. As a
consequence, this model is not easily adaptable and
needs a complex calibration. It is adapted to do-
mains where a subtle individual emotion represen-
tation is needed (facial expression representation,
dialog management, . . . ) for a limited number of
agents.

DETT 1 agent architecture [9] deals with the link
between personality and emotions in a straightfor-
ward way. It is based on properties defined in OCC
model [10]. Especially, DETT defines tendencies,
that is the inclination of an agent to feel and to up-
date its emotions in time. However, there are two
limits to this approach: DETT is not explanatory
(there is a direct link between emotion and action,
but no high-level decision), and it models only two
emotions (fear and bravery) in relation with two
personality aspects (cowardice and temper).

Silverman proposes a complete architecture [3]
that considers agent emotions, physiology and per-
sonality. The functional separation of modules is
static, in order to experiment unitary tests. This
approach is complementary of ours. On one hand,
we evaluate emotion, personality and physiology in
a well-known architecture (BDI) instead of an ad
hoc one. On the other hand, we explore “classi-
cal" procedure in agent’s decision and fuzzy rules in
agent’s perceptions and emotions.

In cognitive modeling, BDI architecture [11, 12]
is often used for its intuitive representation of agent
reasoning. The reasoning is decomposed in mod-
ules for a clear structure. However, in the original
model, emotions, personality and physiology are not
taken in account in the decision process. From this
observation, Jiang and al. developed the eBDI ar-
chitecture [13] that introduced emotion in a BDI
architecture. However, the authors do not explain
how they compute the emotions of the agents.

Human beings often need to deal with imprecise
concepts. Based on this observation, Lotfi A. Zadeh
developed fuzzy set theory that generalizes classical
set theory to allow the notion of partial member-
ship [14].To model the impact of emotions in the
cognitive process of the agents within this frame-
work, fuzzy sets represent the desirability of a par-
ticular event for the agents, as in [16]. The use
of fuzzy logic allows to work with quantitative and
qualitative descriptions in an expressive language.

To represent the mappings between emotion and
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events, other formalisms can be used, such as the
interval-based approach used in the OZ project [15].
We decide to use fuzzy logic in order to allow the
agents to achieve smooth transitions in the resultant
behavior with a relatively small set of rules.

We base our approach on the model FLAME us-
ing fuzzy logic in order to represent emotions [16].
In the FLAME model, fuzzy rules represent the re-
lation between events and desirability. However, in
FLAME, the desirability computation only uses the
impact of an event on a goal and the importance of
this goal for the agent, which is applied to the be-
havior of a pet.

In our model, we intend to represent human be-
havior in complex situations. For this reason, we use
fuzzy rules in order to determine if an event is per-
ceived or not. When the occurrence of an event is
validated by the agent’s perception, we use a mecha-
nism similar to FLAME mechanism to compute the
desirability of a particular event.

In fuzzy rules, according to the typology proposed
by Dubois [17] there are two main kinds of rules:
conjunctive [18] and implicative [19] rules. In our
representation we decide to use two kinds of fuzzy
rules in function of the kind of knowledge we are
dealing with. We will show that conjunctive rules
fit the event’s evaluation and implicative rules the
desirability computation.

3. Perception and Emotion for Cognitive

Agents

We intend to propose modules for intentional cog-
nitive agents. Our modules are made to be adapted
to any sort of cognitive agent with an explicit in-
tention modeling. The modules evaluate the occur-
rence of events and compute the emotional state of
the agent. This computation uses the agent inten-
tions in order to compute the desirability of each
event.

The proposed modules are (i) an event evaluation
based on the perceptions of agents, (ii) a events’ de-
sirability evaluation based on event evaluation and
goals of considered agent, and (iii) an emotion up-
date based on the computed desirability, the occur-
rence of the event and the OCC model [10]. Figure
1 shows an overview of our modules in an agent
architecture.

Fuzzy rules are able to represent two kinds of
information: fuzzy conjunctive rules represent ob-
served facts and fuzzy implicative rules represent
models as restriction of possible worlds. Event’s
evaluation is modeled by fuzzy conjunctive rules
because the perception process can be assimilated
to observed facts information. Event’s desirability
computation is based on the cognitive model (goals
and rules) of each agent, it is then natural to rep-
resent them as implicative rules. The process of
emotion computation is a sequence: first, the events
are perceived and computed thanks to conjunctive



Figure 1: Modules for events and emotions in a cog-
nitive agent architecture

rules, then the fuzzy output obtained from this sys-
tem is re-used as an input of the desirability com-
putation by implicative rules. A level of desirability
is obtained for each event and allows us to com-
pute emotions. Furthermore, the use of emotions
as parameters of the fuzzy rules allows a feedback:
the perception modifies the emotions, which in turn
modify the perception, etc.

The output of a conjunctive rules system is used
as the input of an implicative rule system. The in-
put partition will then be based on the conjunctive
output partition because the inferred information is
relevant for this specific partition. Partition can be
used directly or split if the model needs more gran-
ularity and needs more fuzzy sets to express all the
rules. Figure 2 shows two ways of re-using fuzzy
output partition for the input. After inference with
implicative rules, a numerical desirability level is
obtained by defuzzification in order to be used in
the emotion’s evaluation. However, it is possible to
keep the fuzziness of the output if we want to use
the desirability of the event in an other system of
fuzzy rules for the decision process. The defuzzifi-
cation is necessary just because of the computation
of emotion.

The three modules will be detailed in the follow-
ing sections.

Illustrative example

We illustrate our model with a microscopic traffic
simulation example. Simulation has proved to be
useful in a number of areas related to traffic manage-
ment: understanding the traffic system, predicting
the future state of a network according to past and
current data, and a priori assessment of modifica-
tions of either infrastructure or in-car improvements
such as Intelligent Transportation Systems.

Microscopic simulation models are generally
based on the seminal work from Gipps [20]. It pro-
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Figure 2: Re-use of output partition for input par-
tition

poses a car-following equation, to which was later
added a lane-changing algorithm [21]. Although
they keep track of each vehicle, these models are
not agent-based in the sense that the vehicles are
not autonomous but purely reactive entities in a
centralized system. A comprehensive review of car
following models is found in [22].

Some works have tried to introduce real decision
processes in traffic simulation, see e.g. [23]. Some of
them use fuzzy logic. In [24], the whole behaviour
model is driven by fuzzy logic rules to overcome
the normativity of classic modeling. However, there
is no decision process per se, since it is replaced
by the set of fuzzy rules. Peeta et al. [25] propose
a fuzzy logic based approach to determine the en-
route time-dependent non-truck driver discomfort
level. This discomfort level is then used to modify
the behaviour of the car drivers. Our modeling adds
several features, such as emotion computation and
subjective perception.

In the following, we illustrate the steps and cal-
culations of our model with a driver agent example.
An agent represents a couple Vehicle/Driver and its
goal is related to a trip from an origin to a destina-
tion. The agents travel on a network, and have three
levels of decision: strategic (planning), tactical (ac-
celeration, lane choice) and operational (psychomo-
tor). In this paper, we study the perception part of
the tactical level. The starting situation of our sce-
nario is the following: A driver agent is travelling to
its work (figure 3). Its goal is to arrive on time, but
the highway is congested. It has two choices: trying
to get out of the highway at the next exit, or stay-
ing in its queue. Furthermore, it has the possibility
to use the emergency lane to get to the exit more
speedily. We show in the next sections how fuzzy
rules help to model and compute its perception and
decision process.



driver agent
Figure 3: Traffic simulation: initial situation

4. Fuzzy Conjunctive Rules for Events

Perception

To know if an event occurs, we use the percepts
of the agents. Each event is deduced from several
facts perceived by the agent. The output on figure 4
represents the occurrence possibility for each event.

0−1 1

1

0

Sure

Event occurence

Not sure Almost sure

Figure 4: Fuzzy sets for event occurrence

The computation of events is based on observed
facts. In this case, the data used (perception of the
agent) is typically assimilated to observed examples
and must therefore be represented by conjunctive
rules [26].

Conjunctive rules are often expressed as:

• If X is A1 then Z is O1

• If X is A2 then Z is O2

• . . .

If we consider the real meaning of these rules
(conjunction of inputs with an output), we should
rewrite these rules without the notion of inference
if-then (implication):

• When X is A1, Z is O1 is observed
• When X is A2, Z is O2 is observed
• . . .

With conjunctive rules, the output O′ is given by:

O′ = A′o

n⋃

k=1

(Ak ∧ Ok) (1)

with
⋃

the union, ∧ the conjunction and o the
sup−⊤ composition. The t-norm ⊤ determines the
implication. ⊤ is a triangular norm [27].

For example, minimum and product constitute t-
norms.

We want to use fuzzy rules to compute the desir-
ability according to events. In this context, events
are evaluated in function of the facts perceived by

the agent. The percepts of the agent are indica-
tions of facts of higher level, e.g. in our scenario,
each vehicle perceived (its type, car or truck, and its
current speed) is an indication of whether the agent
will be able to travel the current network section at
a normal pace or not.

The evaluation of event occurrence is done by
rules that take into account the importance of each
fact Fi for any event E:

• When fact F1 is Important and fact F2 is
NotImportant and . . . , event E occurs.

• When fact F1 is Important and fact F2 is
Important and . . . , event E does not occur.

• . . .

These rules must be seen as a mapping of events
with facts. From several facts, we can deduce a
particular event. Occurrence evaluation of events
is evaluated by an occurrence’s value between −1
and 1. At −1, the agent evaluates that the event
did not occur, and at 1 that the event has occurred
. Between these values the event occurrence possi-
bility increases.

Even when the rules are shared by all the agents,
the occurrence perception of an event is different for
each agent, since it depends on the perceived facts
of each agent; it is deduced from their field of vision
and hence from their set of percepts.

Illustrative example

The instantaneous perception of a driver modifies
its short-term plans, the tactical level. The percep-
tion takes into account its direct vision and mirrors.
In this article, we do not separate the different types
of signals it may perceive (vision and sound).

In the driver scenario, the rule to compute the
"travel time delayed" event, which means that the
agent will not pass its current section without being
delayed, is based on three criteria:

• Mean speed of the vehicles. Under 70% of the
target speed of the vehicle2, it is considered as
low, and over 95% it is considered as normal.

• Number of vehicles in the perception area. It is
well known that over a threshold, the speed in
function of the number of vehicles drops quickly
(see e.g. [20]). Hence, under this threshold,
which depends on the number of lanes and ca-
pacity of the section, the number of vehicles is
considered as low, and over it is considered as
important. We have fixed the values at respec-
tively 30 and 60.

• Percentage of trucks. Under 0.05, it is consid-
ered as low, over 0.2, it is high.

Fuzzy sets are given in figure 5 for the average
speed perception, figure 6 for the number of vehicles
and figures 7 for the percentage of trucks.

2The target speed is a driver parameter, which depends

on the legal speed limit and represents the speed the agent

would attain if there were no other vehicle on the road.
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120km/h being the target speed.
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Figure 7: Fuzzy sets for trucks percentage.

For the event “travel time delayed”, we use the
rule set described in table 1. Some explanations
can be given on these fuzzy rules. Each of the three
parameters considered independently does not lead
to a high travel time. The parameter “number of
vehicles“ is objective, but the average speed and
the percentage of trucks may be impacted by the
first: an agent situated in a dense vehicle flow tends
to perceive a lower average speed; and trucks act
as distracters. Furthermore, if the vehicles travel
slowly, they may not easily be overtaken, hence cre-
ating bottlenecks.

When and and Then
Average
speed

Number
of vehicle

Truck
per-
centage

Occurrence
of event is

1 normal not sure
2 low normal quite sure
3 low important low quite sure
4 low important high sure
5 low low low not sure
6 low low high quite sure

Table 1: Fuzzy rules for occurrence computation

Some explications can be given on these 6 rules.
The most important parameter is the average speed.
If the average speed is normal, the event does not
occur. If the average speed is low, we consider the
number of vehicles and then the truck percentage.
The more important the number of vehicle, and
the higher the truck percentage, the more likely the
event ”travel time delayed“.

5. Fuzzy Implicative Rules for Desirability

If an event occurs according to the output inferred
by fuzzy rules, we compute for each agent the de-
sirability of the event considering the impact of this
event and the importance of the goal(s) linked with
this event.

0−1 1
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Desirability

Figure 8: Fuzzy sets for event’s desirability

We use fuzzy implicative rules to compute the de-
sirability of events. As we represent the cognitive
process of each agent, we choose to use implicative
rules because cognitive knowledge can be compared
to a formal model, since formal models are restric-
tions of possible worlds. Indeed, cognitive knowl-
edge is not a mapping between input and output, it
links directly the personal knowledge of each agent
to the environment. Each knowledge must then be
seen as a restriction of possible worlds. The use
of fuzzy implicative rules is more appropriate con-
sidering the output partition of figure 8 as shown
in [28].

Fuzzy implicative rules in one dimension can be
expressed as:

• If X is A1 then Z is O1

• If X is A2 then Z is O2

• . . .



With implicative rules, the output O′ is given by:

O′ = A′o

n⋂

k=1

(Ak → Ok) (2)

Conjunction and implication operators cannot be
chosen independently.

In the presence of an approximate fact A′ and
the implication A → O, we are able to calculate O′

defined by:

µO′(v) = sup
u∈U

µA′(u)⊤(µA(u) → µO(w)) (3)

where µA(x) is the membership function of fuzzy
set A. A membership function defines on each point
of the universe the membership value of u to the
fuzzy set A. The compositional rule of inference
(sup − ⊤) is often denoted as o.

As explained before, we use fuzzy rules to com-
pute the desirability according to events through a
formal model. As in FLAME model [16], we base
the desirability of event on their impacts on agent’s
goals and on the goal’s importance for the consid-
ered agent. However, we use fuzzy implicative rules
because we intend to model the cognitive models of
agents. Hence, the form of the fuzzy rules is:

If Event_Occurence(E) is A1,
and Impact(G1, E) is B1, and Impact(G2, E) is

B2, and . . . ,
and Importance(G1) is C1, and Importance(G2)

is C2, and . . . ,
then Desirability(E) is O

where the Gl are the goals, Ai, Bj , Ck and O

fuzzy sets.

Illustrative example

Once an event is evaluated, we use the rules of table
2. If the event is not sure and if the event has no
impact on the event, it is considered neutral for the
desirability of this event. If the event is sure it has
a direct influence on the Desirability. If the event
is quite sure, it depends on the importance of the
event.

If and and Then
Event
Occurence

Impact
(Event)

Importance
(Event)

Desirability
(Event) is

1 Not Sure Neutral
2 No

Impact
Neutral

3 Quite Sure Negative Important Negative
4 Quite Sure Negative Not

Important
Neutral

5 Quite Sure Positive Important Positive
6 Quite Sure Positive Not

Important
Neutral

7 Sure Negative Negative
8 Sure Positive Positive

Table 2: Fuzzy rules for desirability evaluation

For instance, in our scenario, the event “travel
time delayed” impacts the goal "be on schedule".
Hence, the following rule is relevant:

If Event_Occurence(traveltimedelayed)issure

and Impact(beonschedule, traveltimedelayed) is
Negative

and Importance(beonschedule) is Important

Then Desirability(traveltimedelayed) is
Negative.

If the agent has other goals (e.g. "drive cau-
tiously"), but these goals are not impacted by the
event, then the rule will be:

If Impact(drivecautiously, traveltimedelayed)
is NoImpact,
then Desirability(traveltimedelayed) is Neutral

Based on that kind of rules, the desirability of
each event can be computed. Once the level of desir-
ability is given for each event, we compute a global
desirability for each goal linked to these events.

6. Emotions computation

OCC model [10] is our base for the computation of
emotion. We use the desirability of event to com-
pute emotions. In OCC’s model, emotions are based
on the notion of desirable or undesirable event as
described in table 3. Two notions are important to
compute emotions: the desirability of an event and
its occurrence. Desirable events lead to joy, hope,
satisfaction or disappointment. Undesirable ones
lead to distress, fear, fear-confirmation or relief.
The emotion depends of the occurrence (or non-
occurrence) of desirable (or undesirable) events.

Emotion Rule
Joy Occurrence of a desirable

event
Distress Occurrence of an undesir-

able event
Hope Waiting for a desirable

event
Fear Waiting for an undesirable

event
Satisfaction In hope state: desirable

event occurs
Fear-confirmation In fear state: undesirable

event occurs
Disappointment In hope state: desirable

event does not occur
Relief In fear state: undesirable

event does not occur

Table 3: Emotion according OCC model

Table 4 summarizes the practical computation of
8 basic emotions. The likelihood is based on the
probability of each event to happen and can be dif-
ferent for each agent according to its personality. In



our simulation, we decide to compute likelihood for
each agent. The more an event happens, the more
likely it is to happen again. At the beginning of
the simulation, the likelihood of an event is 0 and
the more this event occurs and is perceived by an
agent, the more this likelihood increases. The max-
imal likelihood is 1.

Emotion Formula for calculation
Joy If Des(e) > 0 then Ejoy =

Des(e)
Distress If Des(e) < 0 then

Edistress = |Des(e)|
Hope If Des(e) > 0 then Ehope =

Des(e) ∗ likelihood(e)
Fear If Des(e) < 0 then Efear =

|Des(e) ∗ likelihood(e)|
Satisfaction If Ehope & occurs(e) then

Esatisfaction = Ehope

Fear-confirmation If Efear & occurs(e) then
Efear−confirmation = Efear

Disappointment If Ehope & not_occurs(e)
then Edisappointment =
Ehope

Relief If Efear & not_occurs(e)
then Erelief = Efear

Table 4: Calculation of emotions

Illustrative example

In the driver scenario, let us assume that the agent
has perceived the event “travel time delayed” as
sure. Since its main goal is to be on schedule, and
considering the impact the event has on this goal,
the desirability of the event is negative. Hence, the
emotions of the agent are:

• Distress = desirability ( “travel time delayed”)
• Fear = desirability ( “travel time delayed”) *

likelihood(“travel time delayed”)

Although the management of stress is not in the
scope of this article, we can give some explanation
on its calculation. Stress is the nervous tension and
a consequence of general adaptation. It is influ-
enced [3] by temporal pressure, tiredness, positive or
negative events and actions success / failure. Hence,
in our example, the stress of the agent is increased
if undesirable events occur.

We have seen that the agent can change the lane
on which it drives. Since the situation is also con-
gested on the left lane, its two options are (i) staying
in queue and (ii) use the emergency lane to exit the
highway. The agent feels distress and fear not to be
on schedule, and the alternative plan (ii) is the only
way not to be late. Hence, the agent chooses to use
the emergency lane.

However, after choosing an intention, the agent
updates one more time its emotions. Here, the de-
sirability of using the emergency lane is high, since

it has a positive impact on the goal "be on schedule".
However, when the agent updates its emotions, two
emotions are added: hope, which is valued as desir-
ability ( “emergency lane use”), and shame. Shame
happens for an action done by the agent which is
disapproved by standards. Depending on its per-
sonality characteristics, the agent will either recon-
sider its action choice (case of a normative agent),
or keep it.

7. Conclusion

The simulation of human behavior, in particular in
complex driving situations, needs to consider emo-
tions in order to obtain plausible behavior. The in-
terest of cognitive models with fuzzy computations
is that the behaviors and chains of actions are ex-
plainable.

For these reasons, we proposed three modules.
Our model presents a perception module, a desir-
ability module and an emotion module based on two
kind of fuzzy rules in order to model two different
kinds of information. The main originality of this
work is to evaluate the occurrence of events through
an example-based modeling via conjunctive rules,
and the desirability of these events through model-
based modeling via implicative rules. Then, based
on these calculations and the OCC model, we are
able to compute emotions in a FLAME-like fash-
ion. This allows a more flexible way of modeling
each step of the perception and decision process.

This work can be improved in several directions:

• Cognitive abilities differences. In the actual
version of our work, each agent has the same
set of rules. In order to obtain more diversity in
the simulated behaviors, it would be interest-
ing to consider different sets of rules according
to the particular agent’s characteristics (age,
personality, . . . ).

• Perceptions. Event’s perception is based on
fuzzy rules. We need to build several sets of
rules in order to perceive many events of driv-
ing situations (accidents, breakdowns, police,
. . . ) or of more general situations.

• Emotions and desirability. It will be interest-
ing to consider more complex emotions (re-
proach/trust, . . . ) that need to take into ac-
count the actions of others agents/vehicles. We
want to study conflict in emotions in the case
of triggering contrary emotions.
In a complex scene many events can happen in
the same time. Then it is important to make
choices about each event according to their im-
portance for the agents. For example, some
events can be ignored if they are not really im-
portant considering the agent’s intentions. Fur-
thermore, the agents generally have a limited
cognitive load.
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