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Abstract 11 

Yield maps are recognized as a valuable tool with regard to managing upcoming crop production but can contain 12 
a large amount of defective data that might result in misleading decisions. These anomalies must be removed 13 
before further processing to ensure the quality of future decisions. This paper proposes a new holistic methodology 14 
to filter out defective observations likely to be present in yield datasets. The notion of spatial neighbourhood has 15 
been refined to embrace the specific characteristics of such on-the-go vehicle based datasets. Observations are 16 
compared with their newly-defined spatial neighbourhood and the most abnormal ones are classified as defective 17 
observations based on a density-based clustering algorithm. The approach was conceived to be as non-parametric 18 
and automated as far as possible to pre-process a growing number of datasets without supervision. The proposed 19 
approach showed promising results on real yield datasets with the detection of well-known sources of errors such 20 
as filling and emptying times, speed changes and non-fully used cutting bar. 21 

 22 
Keywords: DBSCAN algorithm, filtering, local outliers, on-board sensors, spatial neighbourhood, yield  23 

 24 

Introduction 25 

Yield maps have been extensively recognized as a valuable source of information for field decision making (Diker 26 
et al. 2004; Florin et al. 2009; Pringle et al. 2003). They effectively provide a global overview of the field spatial 27 
variability which makes it interesting to target areas or zones for variable rate management. As a combine harvester 28 
passes through a field, yield monitors acquire almost in real-time multiple yield measurements all over the field. 29 
At the same time, those data are associated with the GNSS positioning of the machinery which enables precise 30 
location of each one of these observations at the within-field level. As such, thousands of yield spatial observations 31 
are generated and are ready to be used in the decision-making process. While this considerable volume of data is 32 
critical for field management and decision-making, these datasets must be used with great caution. They effectively 33 
contain lots of defective observations or technical errors that need to be removed to ensure data quality (Arslan 34 
and Colvin, 2002; Blackmore and Moore, 1999). As a consequence, yield datasets are often severely filtered to 35 
make sure further analyses are not flawed (Robinson and Metternicht, 2005; Sudduth and Dummond, 2007; Sun 36 
et al. 2013). Several authors have described to what extent a yield map could evolve after removing abnormal 37 
values (Simbahan et al. 2004; Sudduth and Dummond, 2007). Griffin et al. (2008) have even shown that these 38 
latter observations were able to influence field management decisions.  39 

These technical errors or defective observations have been largely documented in the literature. Lyle et al. 40 
(2013) have proposed a categorization of those latter errors into four major groups: (i) harvesting dynamics of the 41 
combine harvester, (ii) continuous measurements of yield and moisture, (iii) accuracy of the positioning system 42 
and, (iv) harvester operator. These technical errors are briefly described hereafter, in the previously defined order, 43 
along with methodologies that have been proposed by the scientific community to identify these defective 44 
observations.  45 

• The harvesting dynamics of the machine include three different offsets, referred to as the lag time, filling time 46 
and emptying time (Blackmore and Moore, 1999). The lag time induces an offset between the actual and the 47 
true location in space of a yield observation because the yield is not measured simultaneously with the cutting 48 
of the crop. Some attempts have been made to determine this offset through (i) geostatistical methods (Chung 49 
et al., 2002), (ii) image processing techniques (Lee et al. 2012) and (iii) signal deconvolution (Arslan, 2008; 50 
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Reinke et al. 2011). The filling time at the start of a harvest pass leads to an under-estimation of the yield 51 
because the grain flow is increasing and still has not reached a plateau, i.e. the permanent regime. Therefore, 52 
yield measurements do not match the expected true yield values. At the end of a harvest pass, some grain 53 
might still continue to flow after the last crop was harvested and the lag time has been reached. As a 54 
consequence, the latest observations of a harvest pass are generally under-estimated. The methods that have 55 
been proposed so far are exclusively visual, i.e. the grain flow is plotted against the travel time or distance of 56 
the machine and the data located before or after the plateau are removed (Lyle et al. 2013; Simbahan et al. 57 
2004).  58 
 59 

• Continuous measurements relate to yield and moisture observations. So far, studies have focused on 60 
thresholds, mostly determined empirically, to identify measurement errors (Sudduth and Drummond, 2007; 61 
Taylor et al. 2007). Arslan and Colvin (2002) have reported sensor accuracies varying between 1 and 4% 62 
while other authors have found differences up to 10% depending on environmental conditions during data 63 
acquisition, e.g. steep slopes (Reitz and Kutzback, 1996). To overcome that issue, a couple of studies have 64 
focused on the impact of the combine harvester vibrations on the yield measurement accuracy (Hu et al. 2012; 65 
Jingtao and Shuhui, 2010).  66 
 67 

• The accuracy of the positioning systems can lead to (i) observations outside field boundaries, (ii) 68 
measurements at the same spatial location, i.e. co-located points, or (iii) deviations in space according to a 69 
predefined harvest pass (Blackmore and Moore, 1999). The two first types of errors are easily handled by 70 
removing the points outside the boundaries of the field or points with similar co-ordinates (Robinson and 71 
Metternicht, 2005; Simbahan et al. 2004). Some algorithms have been implemented to reconstruct precisely 72 
the harvest passes by studying the angles formed by consecutive points (Lyle et al., 2013). Suspicious points 73 
– those the combine harvester is not likely to have gone through – are removed from the dataset. 74 
 75 

• Last type of errors has to do with the harvester operator. First, large variations in speed are likely to have a 76 
major impact on the yield dataset quality (Arslan and Colvin, 2002; Sudduth and Drumond, 2007). Speed 77 
issues are generally processed the same way as yield and moisture, i.e. by setting thresholds to the whole 78 
dataset or only to neighbouring data (Lyle et al. 2013). The harvester operator is also likely to overlap 79 
consecutive or adjacent harvest passes which may result in yield measurement errors. Some authors have 80 
focused on this ‘not fully used cutting bar’ effect and have come up with vector-based pre-processing methods 81 
to take into account these overlaps, mainly by reconstructing harvesting polygons (Drummond et al., 1999). 82 
These vector-based methods are heavily dependent on the positioning accuracy of the GNSS device and 83 
require a large processing time. Other authors have proposed specific on-board systems, such as those based 84 
on ultrasonic sensors (Zhao et al. 2010). Finally, harvest turns and headlands are also responsible for bad yield 85 
estimates (Lyle et al. 2013). Studies dedicated to these last sources of errors – though limited in the literature 86 
– have focused on finding the points inside harvest turns or headlands by using distance or angle measures 87 
between consecutive points. Suspicious points are removed. 88 

On-board sensors such as yield monitors generate an extremely large amount of observations. This considerable 89 
volume of observations requires the filtering approaches to be at the same time automated, very general and non-90 
parametric (Simbahan et al. 2004; Spekken et al. 2013). The automation condition is fundamental with regard to 91 
the increasing size and number of yield datasets to process. For instance, it would not be conceivable for an 92 
operator or advisor to spend time on the correction of hundreds of possible within-field yield maps. General and 93 
non-parametric detection methods are also to be preferred because of the diversity of datasets that have to be 94 
processed. These datasets are effectively acquired through a variety of acquisition systems – machines, sensors – 95 
and on multiple crops, with different operators and under varying conditions of acquisition, e.g. topography or 96 
climate. It is therefore important to make sure that the approaches are able to deliver conclusive results whatever 97 
the dataset to be analysed. Even though new operating systems exist to improve the quality of yield datasets, e.g. 98 
ultrasonic sensors (Zhao et al. 2010), it can be argued that all the actual combine harvesters are far from being 99 
equipped with it. General methods are therefore also required to process datasets arising from multiple types of 100 
machines, whatever the level of additional equipment installed. It must be kept in mind that agronomic datasets 101 
are often included in complex processes of field management and decision-making, and are sometimes used as 102 
inputs in agronomic models. Data filtering methods have therefore to be robust enough so that the decision-making 103 
process is accurate and not flawed. A limitation of the actual literature is that most of the existing approaches are 104 
semi-automatic and rely on expert thresholds and filters. These last aspects might be problematical for the 105 
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processing of yield maps at a larger scale as filtering settings can be influenced by each map producer and as 106 
skilled operators might be required for a considerable amount of time (Spekken et al. 2013).  107 

The principal contribution of this work is to propose a new holistic data-driven method to filter out defective 108 
observations from on-the-go yield datasets. To the best of the author’s knowledge, very few general or holistic 109 
data filtering approaches have been dedicated to within-field yield datasets. The methodology is firstly formalised 110 
and described to set all the concepts and definitions related to the removal of defective observations in yield 111 
datasets. Then, an implementation of the methodology is proposed with an emphasis on the approach to be as 112 
automated and non-parametric as possible. Finally, the approach is tested on real datasets obtained from grain flow 113 
sensors mounted on combine harvesters.  114 

 115 

On-the-go vehicle based datasets and spatial outlier detection 116 

Acquiring observations with on-board sensors 117 

In agriculture, data acquisition with on-board sensors can be understood as a sequential procedure through time 118 
during which a machine acquires information of a variable Z in space. Indeed, the data collection process follows 119 
a temporal dynamic, i.e. observations are recorded in a specific order and one at a time as the machine passes 120 
through the field (Fig. 1). The machine can simply be modelled by a structuring element that moves through the 121 
field, e.g. a rectangle whose dimensions are defined by the characteristics of the machine and the associated on-122 
board sensors. On-the-go measurements are punctual observations, i.e. diverse realisations of Z, and each point 123 
synthesizes the response of Z over the corresponding structuring element. The spatial resolution of the sensed 124 
variable is controlled by the distance between consecutive records and determined by the distance between adjacent 125 
passes of the machine. The spatial distance between consecutive observations is related to the speed of the machine 126 
and the sampling frequency. In a given field, this frequency of acquisition is generally stable which means that the 127 
distance between consecutive records only relies on the travel speed of the machine. On the other hand, the distance 128 
between adjacent passes depends on multiple parameters such as the work of the machine, the crop being sensed, 129 
or the cost of data acquisition among others. For instance, when a combine harvester with an on-board grain yield 130 
monitor passes through a field, the distance between adjacent passes is related to the width of the cutting bar 131 
because the whole field has to be harvested. 132 

 133 

                 134 

 135 

 136 

 137 

 138 

 139 

 140 

 141 

 142 

 143 

 144 

Fig. 1. Principle of data acquisition with on-board sensors.   145 

According to Tobler’s first law of geography, everything is related to everything else, but near things are 146 
more related than distant things (Tobler, 1970). This concept assumes that there exists some spatial correlation 147 
between spatially close observations, to a greater or lesser extent. Multiple studies have shown that this spatial 148 
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dependency has been clearly exhibited by yield datasets (Pringle et al. 2003; Simbahan et al. 2004). The presence 149 
of this spatial correlation is a central feature of the proposed filtering methodology. 150 

 151 

Spatial outlier detection 152 

The proposed approach will aim at removing the observations that are the cause of strong local variations of Z(x) 153 
which might mask the true spatial correlation between neighbouring points. This approach can therefore be seen 154 
as a spatial outlier detection problem. Outlier detection is one of the major areas of investigation of the data mining 155 
community and has extended to numerous applications such as fraud detection, traffic networks or military 156 
monitoring (Ben-Gal, 2005; Gogoi et al. 2011). Hawkins (1980) has proposed a formal definition of an outlier 157 
which states that it can be described as an observation that deviates so much from the rest of the observations as 158 
to arouse suspicions that it was generated by a different mechanism. When observations are located in space, their 159 
spatial attributes, i.e. co-ordinates, can be used to define a spatial neighbourhood, known as a group of observations 160 
that are relatively close in space. A spatial outlier can then be defined as an observation whose non-spatial attributes 161 
behave differently to those of other observations in its spatial neighbourhood. From these two definitions arises 162 
the distinction between global and local outliers (Chen et al., 2008). Indeed, spatial outliers are only investigated 163 
in a spatial neighbourhood, meaning that the non-spatial attributes of outliers do not necessarily deviate from the 164 
entire dataset. On the contrary, the definition of an outlier proposed by Hawkins (1980) assumes a specific 165 
behaviour of an observation with regard to the whole dataset. 166 

Spatial outlier detection has gained much interest with the increasing amount of spatial observations available. 167 
Although many more algorithms have been proposed to deal with traditional outliers, i.e. observations with no 168 
reference in space, several methods have been specifically addressed to the detection of spatial outliers (Chen et 169 
al. 2008; Filzmoser et al. 2014; Harris et al. 2014; Lu et al. 2003). These approaches generally involve three major 170 
steps. First, for each observation xi, a spatial neighbourhood N(xi) needs to be associated with each observation. 171 
To do so, the user can either define a spatial distance beyond which observations are no longer part of the spatial 172 
neighbourhood or select the number of k spatially close observations that belong to the spatial neighbourhood of 173 
each observation (k nearest neighbours). The next step in spatial outlier detection is the computation of a metric 174 
to quantify the difference between the non-spatial attributes of each observation and those of its spatial 175 
neighbourhood. This problem has been well formalized by Lu et al. (2003). Let fA be an attribute function such 176 
that fA(xi) is the value of the attribute A of xi. Let gA be an attribute function such that gA(xi) is a summary statistic 177 
of the attribute A of the observations belonging to N(xi). A comparison function hA can then be defined as a function 178 
of fA and gA to measure the ‘outlierness’ of each observation xi with regard to N(xi). The ‘outlierness’ reports to 179 
what extent a given observation can be considered an outlier. A high indicator of ‘outlierness’ means that an 180 
observation is likely to be of low quality and as such can be regarded as a defective observation. As an example, 181 
Lu et al. (2003) have proposed a function gA that returns the median of the attribute A of all the observations inside 182 
N(xi) and hA was defined as fA - gA. Finally, the observations are directly classified as outliers or normal 183 
observations (Chen et al., 2008), or at least they are ordered from the most to the least suspicious observation 184 
(Filzmoser et al. 2014; Lu et al. 2003). In the last case, a threshold has to be manually selected to separate the 185 
outliers from the non-outliers.  186 

The definition of outliers in on-the-go vehicle-based datasets such as yield datasets has not been stated so 187 
far and there is a need to be more specific about it. Observations can be considered as outliers if they are 188 
significantly different from their neighbouring observations. From a general perspective, outliers are removed from 189 
the datasets because they can negatively impact the quality of the entire population of observations. These outliers 190 
are often the result of a sensor error or a very particular and isolated phenomenon, e.g. game damage. However, 191 
in the case of sensors embedded on mobile machines, some outliers arise from the machine pass in itself, i.e. from 192 
the data collection process. These types of observations are different from their neighbouring observations, not 193 
because they are abnormal but rather because these observations were acquired under a specific acquisition 194 
process. For instance, when the cutting bar of a combine harvester is not fully used during a machine pass, yield 195 
observations are under-estimated because the grain flow is weighed over a harvest area that is bigger than it should 196 
be (Arslan and Colvin, 2002; Lyle et al. 2013).  197 

 198 

 199 
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 201 

 202 

Material and methods 203 

A new data filtering algorithm dedicated to on-board sensor measurements 204 

A specific neighbourhood for each observation 205 

Spatial neighbours are observations that are relatively close to each other in the space domain. When acquiring 206 
observations with on-board sensors, the data collection process follows the passes of the machine. This means that 207 
spatially close observations might have been acquired (i) during a short time interval, i.e. these observations belong 208 
at least to the same machine pass, or (ii) at different time periods, i.e. they belong to different passes. Given the 209 
varying machine dynamics through the passes, spatially close observations in the same pass do not necessarily 210 
have the same characteristics as spatially close observations in adjacent passes. In fact, it is reasonable to assume 211 
that the data collection process induces in itself an anisotropic phenomenon in the direction of the machine pass, 212 
i.e. between observations that belong to the same pass. This phenomenon should be taken into account separately 213 
in the definition of the neighbourhood for each observation. As a consequence, the proposed approach attempts to 214 
remove the observations that are the cause of strong local variations of Z which might mask the true correlations 215 
between spatially close observations (i) in the same pass of the machine and (ii) in different passes of the machine. 216 

More formally, the spatial neighbourhood N(xi) of an observation xi can be separated into two different 217 
neighbourhoods: a spatio-temporal and a spatio-not-temporal neighbourhood. The spatio-temporal neighbours of 218 
xi are the spatial neighbours that are, at the same time, near in space and time to xi. An observation xi and its spatio-219 
temporal neighbours are acquired in a short time interval. Spatio-not-temporal neighbours are near observations 220 
in the space domain but not in the time domain. From now on, spatio-temporal and spatio-not-temporal neighbours 221 
will be referred to as ST and SNT neighbours. Hence, for each observation xi, the spatial neighbourhood N(xi) is 222 
divided into ST(xi) and SNT(xi). An example is given in Figure 2. Three passes are travelled in opposite directions. 223 
Observation 13 has ST neighbours (observations 10, 11, 12, 14 and 15 for example) and SNT neighbours 224 
(observations 2 to 7 and 18 to 23, for instance). The number of ST and SNT neighbours depends on the size of the 225 
neighbourhood. Note that the use of the two neighbourhoods makes possible a distinction between the specific 226 
machine dynamics inside the same pass and those in different passes of the machine. 227 

 228 

 229 

 230 

 231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

Fig. 2. ST and SNT neighbourhoods of an observation. Each observation xi has a ST(xi) neighbourhood 240 
(observations are acquired in a short time interval) and a SNT(xi) neighbourhood (observations belong to different 241 
passes).  242 
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Given the spatial footprint of the machine and the sampling frequency, the spatial distance between xi and the 243 
observations inside SNT(xi) is often larger than that between xi and the observations inside ST(xi). If the spatial 244 
neighbourhood of xi is defined according to the k nearest neighbours, it may be difficult to control the amount of 245 
ST and SNT neighbours. As a consequence, it was decided to select the observations inside N(xi) via a maximal 246 
spatial distance below which observations belong to N(xi), and not to rely on a number of neighbours. This spatial 247 
distance was set as a function of the distance between adjacent passes, e.g. the cutting width of the combine 248 
harvester. Once observations inside N(xi) were found, they were split between ST(xi) and SNT(xi). To avoid 249 
choosing a specific spatial distance for this neighbourhood research, observations inside N(xi) were selected in 250 
three different squared neighbourhoods of size two, three and four cutting widths of the machine. The algorithm 251 
was then applied on each of these neighbourhoods and the results were averaged over them. It must be stated that 252 
the use of these three spatial neighbourhoods gave three times more importance to the neighbours located at a 253 
distance less than two cutting widths of the machines than to those located at a distance of four cutting widths of 254 
the machine. 255 

A robust metric to quantify the ‘outlierness’ of each observation 256 

Now that neighbouring relationships have been defined between observations, the spatial outlier-based 257 
methodology can be put into place. Each observation xi will be compared to the observations belonging to its two 258 
different neighbourhoods, i.e. ST and SNT neighbours, to evaluate the ‘outlierness’ of xi. As previously explained, 259 
a large ‘outlierness’ value between an observation xi and its ST, SNT or both ST and SNT neighbours, indicates 260 
that the attribute of xi is significantly different to the attribute of its neighbours and therefore that xi might be 261 
considered as an outlier. As two neighbourhoods are considered for each observation, the attribute functions fA, gA 262 
and the comparison function hA can be computed twice. This leads to two measures of ‘outlierness’, one between 263 
xi and the observations inside ST(xi), and the other between xi and the observations inside SNT(xi). Given the 264 
number of defective observations likely to be present in yield datasets, each observation xi needs to be compared 265 
to the observations inside ST(xi) and SNT(xi) with robust metrics not sensitive to outliers. To lessen the influence 266 
of possible outliers inside ST(xi) and SNT(xi), the attribute function gA was set to return the median of the 267 
observations belonging to ST(xi) and SNT(xi). This summary statistic was proven to be effective in several studies 268 
(Chen et al., 2008, Lu et al., 2003). The ‘outlierness’ measures are defined in the same way for ST(xi) and SNT(xi) 269 
with regard to xi.. The comparison function hA, i.e. the ‘outlierness’ measure, was defined as follows: 270 

ℎ𝐴 = 𝑓𝐴 − 𝑔𝐴                                                                            (1) 271 

Where fA and gA are the attribute functions of the variable A corresponding respectively to observation xi and the 272 
observations inside ST(xi) and SNT(xi), hA is the comparison function between fA and gA. 273 

 274 

Bivariate plot of ‘outlierness’ 275 

Each observation xi is now characterized by two measures of ‘outlierness’ which can be represented in a bivariate 276 
plot of ‘outlierness’ (Fig. 3). The bivariate plot does no longer contain spatial information, i.e. co-ordinates, which 277 
means that the spatial outlier detection has now turned into a traditional outlier detection with a two-dimensional 278 
dataset. Hence, from now on, all the notions of distances will only refer to distances between observations in the 279 
bivariate plot, in the non-spatial attributes domain. From a general perspective, outliers can be defined as those 280 
observations that have a strong disagreement with either ST, SNT or both ST and SNT neighbours. Despite the 281 
relatively high number of defective observations that can be found in datasets obtained from on-board sensors, the 282 
majority of observations can be considered as non-outliers. These non-outliers, or normal observations, must have 283 
similar characteristics to that of their ST and SNT neighbours and should all be found in the central portion of the 284 
bivariate plot (Fig. 3). Indeed, normal observations have been given a small ‘outlierness’ measure in absolute to 285 
indicate that their attribute value is really similar to that of their neighbours. Observations with large ‘outlierness’ 286 
values with regard to either ST, SNT or both ST and SNT neighbours should be relatively far from the rest of the 287 
observations and should be classified as outliers. All these observations must be now classified as outliers or non-288 
outliers to be able to automatically filter a high quantity of maps.  289 

 290 

 291 

 292 
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 299 
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 303 

 304 

Fig. 3. ‘Outlierness’ of each observation with its ST and SNT neighbours. The majority of observations in the 305 
centre of the plot have a small ‘outlierness’ value (relative to zero) with regard to their ST and SNT neighbours 306 
which indicates that these observations have a consistent behaviour with their neighbours.    307 

 308 

A density-based clustering algorithm 309 

As the majority of observations are considered non-outliers, the density of observations around normal 310 
observations should be much higher than around outliers (Fig. 3). Multiple density-based methods have been 311 
proposed in the literature but the threshold to classify observations as outliers or non-outliers is very often selected 312 
manually. As a consequence, it was decided to go further and to cluster observations that shared the same density 313 
of observations around them. One strong advantage of the clustering-based methods is that they do not give an 314 
‘outlierness’ score to each observation but rather intend to discover groups of similar observations. On top of that, 315 
to automate the outlier identification, a non-parametric, or unsupervised, method should be preferred. Indeed, 316 
datasets acquired with on-board sensors are obtained through a variety of conditions, e.g. sensor, crop, operator, 317 
field characteristics, conditions of acquisition, and it was considered irrelevant to infer or consider a specific data 318 
distribution. A non-parametric method was also needed to deal with any arbitrary shape of the data distribution 319 
that was likely to occur. The algorithm DBSCAN (Density-Based Spatial Clustering of Applications with Noise) 320 
was selected because of its ability to combine both advantages of density and clustering-based approaches (Ester 321 
et al., 1996). This method also fulfils the constraints that were set previously, especially regarding the use of a 322 
non-parametric approach to classify the observations. Duan et al. (2007) proposed some improvements of the 323 
DBSCAN algorithm but they were not considered very useful in this outlier detection case. Other traditional 324 
methods commonly reported, i.e. distribution-based or distance-based (Filzmoser et al. 2014; Harris et al. 2014). 325 
might have been used but they were considered difficult to automate and to use in a non-parametric manner. 326 
Indeed, distribution-based methods rely on strong statistical assumptions with regard to the distribution of the 327 
variable of interest. Distance-based methods often require the variable distribution to be normal so that reliable 328 
thresholds can be used to classify observations as outliers (Filzmoser et al., 2014).  329 

DBSCAN requires two parameters to identify clusters: the distance from each observation to its 330 
neighbours (𝜀) and the minimum number of observations inside the neighbourhood given the distance 𝜀 (Minpts) 331 
(Fig. 4). It must be clear that the DBSCAN algorithm is applied on the bivariate plot of ‘outlierness’ and not on 332 
the initial dataset. To avoid any confusion with the neighbourhood N(xi) previously introduced, this new 333 
neighbourhood of an observation xi will be referred to as NO(xi), i.e. Neighbourhood with regard to ‘Outlierness’ 334 
values. For a given observation xi, the algorithm finds its neighbouring observations NO(xi) given the distance 𝜀 335 
and tests whether this NO neighbourhood contains at least Minpts observations (Fig. 4). When this condition is 336 
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fulfilled, xi is set inside the core of a cluster and the algorithm expands the cluster by applying the same method to 337 
the observations inside NO(xi) and their corresponding neighbours until the constraint relative to Minpts is no 338 
longer respected. For instance, in Figure 4, the triangles have at least five neighbours within an 𝜀 distance and 339 
therefore are included in the core of the cluster. The square is reachable by one of the triangles, but this square has 340 
less than five neighbours. The stars are not reachable by any point inside the core of the cluster and will not be 341 
part of the central cluster. If an observation xj is inside the neighbourhood of an observation xi but the 342 
neighbourhood of xj contains less than Minpts observations, observation xj is labelled as noise but is still included 343 
in the cluster corresponding to xi, e.g. the square in Fig. 4 (Ester et al., 1996). The insertion of xj in the cluster 344 
related to xi helps retrieve the global shape of the cluster rather than the core of the cluster only. This method was 345 
considered appropriate to build one large cluster retaining all the normal observations while leaving the outliers in 346 
other clusters. To obtain a reliable clustering, it was necessary to define the optimal parameters 𝜀 and Minpts. 347 
Some works had already been proposed to determine automatically these criteria but still requires some manual 348 
thresholds (Sawant, 2014). The previous work helped to develop a fully-automated approach. 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

Fig. 4. Application of the DBSCAN algorithm.  359 

The distance 𝜀 was defined in the first place as the most frequent distance between two different 360 
observations (Fig. 7). In fact, as the majority of observations, i.e. the non-outliers, are expected to be clustered in 361 
the same group, the most frequent distance between two different observations should be a characteristic of normal 362 
observations. The distances were calculated as euclidean distances between two observations within the bivariate 363 
plot of ‘outlierness’ (Fig. 3). The ‘outlierness’ measures were centred and reduced to avoid giving too much 364 
influence to one of these two measures of disagreement. Given this optimal 𝜀 distance, the number of neighbours 365 
inside NO(xi) was computed for each observation xi. The distribution of the NO neighbours was used to select an 366 
optimal value for the Minpts parameter (Fig. 7). As the Minpts value increases, the size of the clusters diminishes 367 
because less and less observations fulfil the requirement regarding the minimum number of observations inside 368 
their neighbourhood. This Minpts parameter must not be set too high so that the whole shape of the cluster is taken 369 
into account. It was stated that a break in the NO neighbours’ distribution should reflect an optimal separation 370 
between different clusters. This break was chosen to be a local minimum in the distribution of the NO neighbours. 371 
Indeed, a local minimum corresponding to k neighbours indicates that the observations that have k neighbours 372 
within a 𝜀 distance are located at the border between two clusters of different density of neighbours. This first local 373 
minimum was considered a good indicator of the separation between normal and outlying observations. To 374 
optimally select the parameters 𝜀 and Minpts, the densities of (i) the distance between different observations and 375 
(ii) the number of neighbours for an optimal 𝜀 distance, were estimated via a kernel density estimation (KDE).  376 

 377 

 Adjusted filtering for wrongly identified outliers 378 

When the ST and SNT neighbourhoods of an observation xi contain many defective observations, the function hA 379 
might be sensitive to these outliers, even if robust metrics are used. As a consequence, some observations might 380 
be wrongly classified as outliers only because their neighbourhood is outnumbered by outliers. To overcome this 381 
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limitation, the ‘outlierness’ values attributed to each observation xi that was previously classified as an outlier has 382 
to be re-evaluated. More specifically, each observation must be compared to a neighbourhood that only contains 383 
non-outlying observations considering the first iteration of the approach. In this way, the influence of outliers in a 384 
spatial neighbourhood is removed. To account for the wrongly identified outliers, a second iteration of the 385 
proposed approach was put into place. For each observation xi, hA(xi) was recalculated except that this time, the 386 
neighbourhoods of xi were set free of other outliers. This means that if an observation is definitely an outlier, 387 
removing outliers from its neighbourhood will still classify this observation as an outlier. On the other hand, if the 388 
observation was wrongly classified as an outlier, removing outliers from its neighbourhood would significantly 389 
decrease the ‘outlierness’ values associated and therefore would lead to classifying the observations as a normal 390 
one. Once each observation xi was given new hA(xi) values with regard to both ST and SNT neighbours, the 391 
classification based on the DBSCAN algorithm was run a second time to identify the real outliers. 392 

Last considerations before using the proposed algorithm 393 

The adjusted spatial outlier detection was not applied directly on the raw dataset. Some corrections were added 394 
before applying the proposed algorithm to improve the quality of the results. Among the observations that were 395 
likely to affect the efficiency of the proposed algorithm, especially co-located points and global outliers were of 396 
great concern and were removed before searching for spatial outliers. Co-located records are observations that are 397 
acquired at the same spatial position either due to a stop of the combine or to an error in the GNSS position. In 398 
either case, these observations must be filtered out because they exhibit most likely an abnormal value. Global 399 
outliers were removed because they could be spotted relatively easily and could have some influence on the 400 
detection of the spatial outliers. Global outliers were removed in a non-parametric way following the method of 401 
Hubert and Van der Veeken (2008).  402 

To ease the understanding of the proposed approach and knowing that the procedure requires to travel between 403 
multiple domains, i.e. spatial, temporal, and attribute, a flowchart of the algorithm is provided (Fig. 5). A step-by-404 
step description of the data filtering process is also presented afterwards. 405 

 406 

 407 

Fig. 5. A simple flowchart of the proposed approach 408 

 409 
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Algorithm (Adjusted Spatial Outlier detection) 410 

1. Remove co-located points and global outliers [Global filtering] 411 
2. Remove local outliers [Local filtering] 412 

a. For each point xi remaining in the dataset: 413 
i. Compute the square neighbourhoods based on a radius of two, three and four cutting 414 

widths. For each of these neighbourhoods: 415 
1. Separate the neighbourhood N(xi) into ST(xi) and SNT(xi) 416 
2. Calculate the ‘outlierness’ value of xi with regard to ST(xi) and SNT(xi) using 417 

the function hA 418 
ii. Average the ‘outlierness’ values with regard to ST(xi) and SNT(xi) over the three square 419 

neighbourhoods 420 
b. Determine optimal parameters 𝜀 and Minpts for the DBSCAN algorithm 421 
c. Apply DBSCAN to extract the cluster consisting of normal observations 422 

3. Refine detection of local outliers [Adjusted filtering] 423 
4. Extract the final cluster of normal observations. 424 

 425 

The whole methodology was developed using the R statistical environment (R Core Team, 2013). 426 

 427 

Evaluation of the proposed algorithm and datasets used 428 

The proposed algorithm was tested on ten real within-field yield datasets arising from three different farms, i.e. 429 
two located near Evreux, in the north-western part of France (Farm 1 - WGS84: E:0.779, N:48.955; Farm 2 - 430 
WGS84: E:1.032, N:48.828) and one located close to Peterborough, UK (Farm 3 - WGS84: E:-0.105, N:52.643). 431 
Fields were mostly cropped in wheat and harvested with combines of different brands, especially New Holland 432 
(Turin, Italy) and Claas (Harsewinkel, Germany) combines. Among these ten datasets, two of them (dataset 1 from 433 
Farm 3 and dataset 2 from Farm 2) were selected to provide readers with a deeper analysis of the proposed 434 
approach. The two datasets (datasets 1 and 2) were especially chosen for containing different sources of defective 435 
observations. Table 1 and 2 respectively report yield statistics for the two (datasets 1 and 2) and ten datasets under 436 
consideration. 437 

For the ten yield datasets, the proposed approach was evaluated in the same way as in many previous studies, i.e. 438 
by looking at the yield distribution and spatial structure before and after filtering out outliers (Simbahan et al., 439 
2004, Sudduth et al., 2007). This evaluation procedure still has some limits as this validation remains somehow 440 
qualitative. Indeed, outliers are not labelled in the yield datasets so one cannot be entirely sure whether an outlier 441 
is truly one. However, this procedure was considered sufficient in the first instance. Furthermore, for datasets 1 442 
and 2, the detected outliers were plotted on their corresponding field to better understand their characteristics. 443 

 444 

Results and discussion 445 

Improvements in the yield distribution and spatial structure 446 

A specific attention to datasets 1 and 2 447 

Both raw and filtered yield datasets of datasets 1 and 2 are presented via their principal descriptive statistics (Table 448 
1) and semi-variograms (Fig. 6). The pre-filtering step, i.e. Glob outliers, consisted in the removal of co-located 449 
points and global outliers. Observations with a yield value equal to zero were also discarded because they were 450 
likely to mask the presence of some global outliers. Indeed, observations with a zero yield value are definitely not 451 
expected and might have been obtained when the cutter bar was lowered while the crop had already been harvested. 452 
The removal of zero yield values, co-located points and global outliers substantially changed the summary statistics 453 
of yield datasets by lowering the standard deviation by a factor of 2 and increasing the average yield in the fields 454 
by almost 5%. More interestingly, these first outliers were completely masking the yield spatial structure in the 455 
two fields of interest (Fig. 6). Indeed, the semi-variograms testify of a clear yield spatial structure with well-defined 456 
nugget and sill parameters. These results demonstrate to what extent a simple pre-filtering approach such as the 457 
removal of global outliers and really unexpected values (zero-yield observations) can improve the characteristics 458 
of within-field yield datasets. 459 
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 460 

Table 1. Yield descriptive statistics (t ha-1) of datasets 1 and 2. ‘Raw’ stands for the original dataset. ‘Glob filtered’ 461 
is the original dataset after the pre-filtering step (essentially global outliers, co-located points and zero-yield 462 
observations. ‘Loc filtered’ is the dataset after the pre-filtering step and the removal of local outliers. ‘Adjusted’ 463 
is the dataset after adjustment for wrongly identified outliers. SD stands for standard deviation. Nb. observations 464 
is the number of observations in the corresponding dataset. 465 

Dataset Type Min Mean Median Max SD 
Nb. 

observations 

1 

Raw 0 7.75 8.13 90.41 2.65 6526 

Glob filtered 3.20 8.04 8.20 11.64 1.38 6143 

Loc filtered 4.26 8.26 8.32 11.31 1.04 5333 

Adjusted 4.56 8.26 8.31 11.37 1.06 5400 

2 

Raw 0 8.65 9.10 40.00 1.99 3279 

Glob filtered 5.80 9.07 9.20 11.20 0.87 3003 

Loc filtered 6.80 9.16 9.20 11.20 0.68 2743 

Adjusted 6.80 9.16 9.20 11.20 0.70 2803 

 466 

Local outliers were removed from the previously pre-filtered dataset (Loc filtered). These outliers have 467 
less influence on yield summary statistics compared to the global outliers (Tab. 1). This is essentially due to the 468 
fact that these statistics characterize the yield dataset at a global level. However, it can be seen that local statistics 469 
are substantially impacted by these local outliers (Fig. 6). The spatial structure appears effectively much more 470 
clearly once outliers have been removed. As expected, the final step of the proposed methodology, i.e. Adjusted, 471 
does not produce major improvements on either the yield distribution or spatial structure. This step can rather be 472 
considered like a refinement of the proposed approach and was not aimed to drastically impact the yield 473 
characteristics.  474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 

 484 

 485 

Fig. 6. Spatial structure of yield datasets 1 and 2 with the proposed methodology. ‘Raw’ stands for the original 486 
dataset. ‘Glob filtered’ is the original dataset after the pre-filtering step (essentially global outliers, co-located 487 
points and zero-yielding observations. ‘Loc filtered’ is the dataset after the pre-filtering step and the removal of 488 
local outliers. ‘Adjusted’ is the dataset after adjustment for wrongly identified outliers. 489 

 490 

Analysis of the ten datasets under study 491 



12 
 

Table 2 reports descriptive and spatial statistics regarding the ten datasets under consideration. All the raw yield 492 
datasets exhibit a large variability, i.e. high coefficient of variation, because of the presence of global and local 493 
defective observations. The influence of local outliers on the yield spatial structure is clear for all the ten datasets 494 
under study (Table 2). Indeed, nugget to sill ratios are significantly improved, i.e. reduced, once local outliers are 495 
filtered out from the yield datasets. Even though the level of autocorrelation remains medium for some datasets 496 
after the removal of local outliers, e.g nugget to sill ratio more than 50%, it must be clear that the spatial structure 497 
is still stronger than when local outliers were left inside the yield datasets. The proposed methodology removed a 498 
relatively high number of observations, i.e. from 19 to 50% of the dataset size (Table 2). These defective 499 
observations are, at the same time, global and local outliers, and with different proportions of each type for each 500 
dataset. Some datasets effectively contain more global outliers, e.g. because of more measurements when the 501 
cutting bar was up, while more local outliers have been filtered in others, e.g. more speed changes. Note also that 502 
this number of defective observations substantially varies among the datasets under study which demonstrates that 503 
all yield datasets are different and that a general filtering methodology is interesting to consider.  504 

Table 2. Yield statistics for the ten datasets under consideration. Spatial statistics are presented before (Glob 505 
filtered) and after (Loc Filtered) removing yield local outliers. The percentage of points removed during the whole 506 
filtering process (from ‘raw’ to ‘adjusted’ yield datasets) is also reported. CV stands for the coefficient of 507 
variation. 508 

Dataset 

Descriptive statistics 

(Raw yield dataset) 
 Spatial statistics  

Surface 

(ha) 

Mean 

 (t.ha-1) 

CV 

(%) 

Nugget/Sill (%) 

Glob filtered 

Nugget/Sill (%) 

Loc Filtered 
Points removed (%) 

1 20.5 7.75 23.0 72 52 19 

2 3.5 8.65 34.2 66 49 17 

3 13.1 5.1 114 100 50 42 

4 28.0 4.9 57.5 100 55 45 

5 45.2 6.3 48.5 82 41 33 

6 10.5 7.1 67.7 85 33 50 

7 25.1 7.5 50.3 92 29 33 

8 13.1 7.6 60.7 85 76 32 

9 22.2 7.1 73.4 84 40 39 

10 30.5 9.4 21.1 32 21 21 

 509 

Evaluation of the density-based clustering approach 510 

Detection of the DBSCAN parameters 511 

Figure 6 demonstrates the application of the DBSCAN algorithm on the bivariate plot of ‘outlierness’ for datasets 512 
1 and 2. For both datasets, there is a clear maximum value in the density of distances between different observations 513 
which enables a clear detection of the 𝜀 distance (Fig. 7, left). As the distance between different observations 514 
increases, more and more distant observations are considered. Small distances between different observations 515 
characterize essentially the nearest neighbour distances between observations inside the core of the cluster of 516 
normal observations which is why the density is relatively low for these distances. The clear peak identifies the 517 
distance between two different observations that is the most representative of the cluster of normal observations. 518 
After the peak, the larger distances account for very distant observations such as, for instance, a normal observation 519 
and an outlier, or two normal observations very far from each other inside the cluster of normal observations. The 520 
most frequent distance between two different observations should therefore reliably discriminate the cluster of 521 
normal observations. 522 

For both datasets, the first local minimum in the density of the number of neighbours, i.e. corresponding 523 
to the parameter Minpts, appears relatively clearly. For the optimal 𝜀 distance that was previously chosen, as the 524 
number of neighbours increases, the density of the number of neighbours starts decreasing relatively quickly then 525 
increases smoothly at first, then more abruptly (Fig. 7, left). The first peak and neighbouring values is due to 526 
outlying observations that have a few number of neighbours within an 𝜀 distance. The last peak and neighbouring 527 
values are related to normal observations, i.e. inside the core of the cluster of normal observations, with a very 528 
high number of neighbours within an 𝜀 distance. Between these two peaks, the first local minimum in the density 529 
of the number of neighbours, from the lesser to greater number of neighbours, is considered a good separator 530 
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between the cluster of normal observations and the outliers. Indeed, it separates a high-density region from low-531 
density regions. The first local minimum is also generally the global minimum in the distribution of the NO 532 
neighbours. It was therefore selected as a good estimate to separate outliers from normal observations.  533 

 534 
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 556 

 557 

 558 

 559 

 560 

Fig. 7. Optimal selection of DBSCAN parameters and corresponding detection of normal observations. For each 561 
dataset, the plot in the top left-hand corner helps determine the optimal 𝜀 distance while that in the bottom left-562 
hand corner enables retrieval of the Minpts parameter of the DBSCAN algorithm. The right plot shows the cluster 563 
of normal observations in the centre portion of the plot (red dots in the online version) and the outliers identified 564 
by the proposed method. 565 

Be aware that the identification of the DBSCAN parameters, i.e. 𝜀 and Minpt, was clear for the ten yield 566 
datasets under consideration (data not shown) meaning that the outliers could be separated from the rest of the 567 
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observations. Depending on the type and number of defective observations, the shape of the density curves did not 568 
match perfectly but the overall structure was similar. 569 

Detection of local outliers 570 

Using the parameters previously defined, the DBSCAN algorithm was able to find a large and dense cluster in the 571 
centre of the data for both datasets (Fig. 7, right). Regarding dataset 1, some outliers expand towards the left of 572 
the plot and exhibit a large ‘outlierness’ value with regard to their SNT neighbours (value far from 0) and a low 573 
‘outlierness’ value with regard to their ST neighbours. These outliers are observations that belong to passes 574 
harvested with a low cutting width (Fig. 8, left). Indeed, a long tail of low-yielding observations surrounded by 575 
observations with a much higher yield value is very often the sign of a non-fully used cutting bar. These 576 
observations are consistent with spatially close observations in the same pass because all of them were recorded 577 
with a low cutting width. In contrast, adjacent passes were harvested with a full cutting bar which is why these 578 
outliers do not share similar characteristics with spatially close observations in adjacent passes. 579 

 For the two fields under study, some outliers are located on the diagonal of the plot, i.e. the yield values 580 
of these observations are significantly different from those of their ST and SNT neighbours. This characteristic is 581 
specific to observations recorded at the start and end of each row (Fig. 8).  When the combine harvester enters or 582 
leaves a pass, the grain flow can be significantly different from within the pass. The filling time at the start of a 583 
harvest pass induces an under-estimation of the yield because the grain flow is increasing and still has not reached 584 
a plateau, i.e. within the pass. Therefore, the yield measurement does not match the expected true yield. At the end 585 
of a harvest pass, some grain might still continue to flow after the last crop was harvested and the lag time has 586 
been reached. As a consequence, these observations have a different behaviour to that of spatially close 587 
observations in the same and in adjacent passes. These two known sources of error are the most easily detected on 588 
the right-hand side plot because the corresponding observations are relatively clustered on the plot. 589 

 590 

 591 

 592 

 593 
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 599 

 600 

 601 

 602 

Fig. 8. Location and label of the outliers detected by the proposed methodology within the fields.  603 

In contrast to the two previous sources of errors, some outliers are detected more irregularly in the field 604 
and might be the sign of abrupt speed changes or bad moisture/yield records. Some of these other sources of error, 605 
e.g. speed changes can also be identified relatively precisely. From a practical point of view, the yield is the ratio 606 
of the grain flow to the corresponding harvested area during a fixed time interval. A harvest area can be defined 607 
by both the cutting width and the travel speed of the machine. As a consequence, large speed variations during a 608 
specific time interval result in large yield variations. Observations acquired during a speed change will likely have 609 
different properties than those of spatially close observations in the same and in adjacent passes.  610 
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Regarding the ten datasets under study, each bivariate plot of ‘outlierness’ had its proper characteristics 611 
depending on the types of outlier present (data not shown). Some features were recurrent, e.g. the outliers located 612 
on the diagonal of the plot, because all the yield datasets contained observations related to the filling and emptying 613 
time of the machine, to a greater or lesser extent. Others were less present such as the tail of outliers expanding 614 
towards the left of the plot because overlaps were very rare within the datasets. From a general perspective, it is 615 
clear that each yield dataset has its own properties. This implies that there is a need for filtering procedures to be 616 
as flexible and general as possible so that each dataset can be processed accordingly no matter the type or number 617 
of outliers.  618 

The proposed methodology has only been applied to the yield attribute in yield datasets. It could be argued 619 
that none of the other attributes in yield datasets, such as the speed of the machine or the grain moisture, had been 620 
used to detect the possible outliers. It was actually considered that all these attributes were used in the calculation 621 
of the yield attribute and therefore that any strong deviations of one of these attributes should have led to a bad 622 
yield estimate that would have been spotted as outliers with regard to its ST or SNT neighbours. 623 

In this study, several outliers that were detected by the proposed algorithm were put in relation to some 624 
technical errors that can be found within yield datasets (Fig. 8). Nonetheless, it remains relatively difficult to assess 625 
the effectiveness of a specific filtering methodology. In fact, as raw yield observations are not labelled within the 626 
datasets, one cannot be entirely sure whether an observation identified as an outlier is truly one. Obviously, some 627 
errors are clearly visible on the map but for others, it is much more difficult to be sure, even with a skilled operator. 628 
To cope with this issue, one possibility could be to generate simulated yield datasets in which the location of 629 
outliers is known so as to assess more objectively the interest and reliability of a filtering approach (Leroux et al., 630 
2017). Another improvement of the proposed methodology would be to intend to correct the outliers detected 631 
instead of abruptly removing them. Indeed, even if the removal of outliers is not dramatic for the size of the yield 632 
datasets as they already contain lots of observations, it could be still interesting to see whether a proper correction 633 
is possible. As it was found that multiple sources of error had a specific behaviour in the bivariate plot of 634 
‘outlierness’, it might be conceivable to identify and label these errors so as to propose a correction. For instance, 635 
observations belonging to passes harvested with a low cutting width could be extracted and corrected properly by 636 
estimating the proportion of the cutting width that was actually used when these observations were acquired.  637 

 638 

Conclusion 639 

A new holistic data-driven method was proposed to filter out local outliers from within-field yield datasets. This 640 
approach essentially consisted in finding observations whose attribute of interest had the most significant 641 
difference with regard to that of the observations inside their spatial neighbourhood. To meet the specificities of 642 
within-field yield datasets, a new concept of neighbourhood has been formalised. Outlying observations were then 643 
detected by a density-based clustering method. One of the major interests of the approach is that it does not require 644 
any manual settings prior to the filtering. All metrics and thresholds are driven by the data themselves. The 645 
approach was successfully tested on yield datasets but could be extended to many more spatial datasets from on-646 
the-go sensors. Besides, it must be said that the methodology was applied solely on the yield attribute, i.e. on 647 
univariate datasets. The approach could also be extended to datasets of higher dimension. Overall, the proposed 648 
algorithm was proven effective at removing unwanted observations from on-the-go vehicle-based yield datasets 649 
and should be used as a first step before deeper processing. Despite significant improvements in the distribution 650 
and spatial structure of yield datasets, the evaluation of the algorithm was still subjective. Future work will involve 651 
the comparison of multiple approaches through the use of simulated datasets to offer much more objective 652 
conclusions. 653 
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